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CHAPTER 1
Introduction

By the end of the establishment of Quantum Mechanics during the first three decades of the
20th century, describing electromagnetic radiation in atoms within the framework of Quantum
Mechanics required a formalism that was able to describe the creation and annihilation of
particles as well as the interaction between electrons and photons. It was Paul Dirac who
provided a first proper treatment of this problem in his paper The Quantum Theory of the
Emission and Absorption of Radiation in 1927 [1]. By combining Quantum Mechanics, the
Special Theory of Relativity as well as Classical Field Theory, Dirac, Pascual Jordan, Eugene
Wigner and others laid the foundation for Quantum Electrodynamics (QED), the first kind of
a Quantum Field Theory (QFT). It describes the electron and the photon as well as their
interactions and naturally gives rise to the antiparticle of the electron, the positron [2].

The 1930s and 1940s were dominated by the challenge of handling the infinities which
Robert Oppenheimer found to be a generic feature of computations for any higher-order
correction to observables of QFTs [3]. The breakthrough came around 1950 with a series of
papers by Richard Feynman, Julian Schwinger, Sin-Itiro Tomonaga and Freeman Dyson, in
which the procedure of renormalization was developed to consistently cancel all infinities (see
[4] and references therein).

In order to theoretically describe the experimentally established observations of the weak
and the strong interaction, generalizations of QED were proposed, in particular theories with
non-Abelian gauge symmetries. Until the early 1970s, this process had lead to the discovery of
the Electroweak Theory – describing the weak interaction by using the mechanism of symmetry
breaking that gives rise to the Higgs boson [5–7] – as well as Quantum Chromodynamics
(QCD), which describes the strong interaction between quarks. At the same time, also the
Standard Model of Elementary Particles (SM) started taking shape [2].

Meanwhile, particle accelerators were constructed that allowed for the observation of
particle collisions at higher and higher energies. Their findings accompanied the development
of the theories or confirmed their predictions retrospectively. In this way, more and more
new particles were experimentally discovered and appropriately built into the framework of
the SM. Finally, with the discovery of the Higgs boson in 2012 at the Large Hadron Collider
(LHC) at CERN, the last piece of the SM was experimentally confirmed [8, 9].

Together, QFT and the SM have been very successful in predicting experimental results to
a high precision (see for example [10, 11]), yet there are still phenomena they cannot explain.
One of the outstanding problems in modern physics is Dark Matter (DM).

In 1933, Fritz Zwicky used the virial theorem to determine the mass of the Coma galaxy
cluster and was the first who found that the density of luminous matter is much smaller than
the density of DM [12, 13]. Until today, by various methods, astronomers have found striking
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2 Chapter 1 Introduction

evidence for the existence of considerable amounts of gravitationally interacting (i. e. massive)
and non-luminous (i. e. electrically neutral) matter in the universe: Dark Matter. While in
the early stages of DM research DM was mainly thought of as non-luminous ordinary matter,
such as planets, nebulae or gases [13], these possibilities were eventually ruled out (see for
example [14]). In the 1980s it became the leading paradigm that DM consists of non-baryonic
particles [13]. However, the specific nature of DM remains unclear until today.

A promising DM candidate class is the weakly interacting massive particle (WIMP). In
order to produce the observed DM relic abundance through the freeze-out mechanism, the
DM particles must self-annihilate with a cross section 𝜎 of about ⟨𝜎𝑣⟩ ∼ 10−26 cm3s−1 [15],
where 𝑣 is the relative velocity of the annihilating particles and ⟨ · ⟩ the thermal expectation
value. The fact that this order of magnitude corresponds to the cross section of interactions
transmitted by the weak force has been referred to as the WIMP miracle and serves as an
excellent motivation for the study of WIMPs [13].

In order to incorporate such a DM candidate, the SM needs to be extended. The Higgs
potential of the weak sector of the SM Lagrangian is so far experimentally only weakly
constrained and extending it leads to a rich spectrum of phenomenological characteristics
[16].

In this work, a specific minimal extension of the SM is studied, the Dark Complex Scalar
Extension of the Standard Model (DCxSM), in which a new complex singlet is added to
the Higgs sector of the SM Lagrangian, which – after electroweak symmetry breaking –
gives rise to a scalar field describing a DM particle candidate [17]. For this candidate, the
spin-independent cross section for DM Direct Detection experiments is computed, which
aim for detecting the scattering of a DM particle with a nucleus from some target material.
Since the tree-level contribution to this cross section vanishes in the non-relativistic limit
(see Sec. 5.1), higher-order corrections have to be taken into account.

The DCxSM is introduced in Chapter 2. In Chapter 3, an overview over the experiments
that have been and are currently conducted to detect DM is provided, focusing in partic-
ular on DM Direct Detection experiments, for which the kinematics and the connection
between experimental measurements and theoretical calculations is presented in detail. The
renormalization of DCxSM, which is required for the higher-order calculations, is presented
in Chapter 4. In Chapter 5 it is explained which diagrams are taken into account and
which techniques have been applied to compute them. Finally, the results are analyzed and
compared to current experimental exclusion limits in Chapter 6, and in Chapter 7 the work
and the results are summarized.



CHAPTER 2
The Lagrangian and Parameters of the DCxSM

In this chapter the Dark Complex Scalar Extension of the Standard Model (DCxSM) is
introduced. The DCxSM is a modification of the SM that exclusively affects the Higgs sector,
where a new complex scalar field 𝑆 is added as a singlet under the gauge group. Being a
singlet, it comes with the kinetic term |𝜕𝜇𝑆|2, which does not contain a covariant derivative,
and therefore 𝑆 does not couple to any gauge bosons.

The Higgs sector potential in the DCxSM is given by [17]

𝑉 = −
𝜇2

H
2 |𝐻|2 + 𝜆H

2 |𝐻|4 −
𝜇2

S
2 |𝑆|2 + 𝜆S

2 |𝑆|4 + 𝜆HS|𝐻|2|𝑆|2 −
𝑚2

𝜒

4 (𝑆2 + 𝑆*2) . (2.1)

Here, 𝐻 is the SM Higgs doublet and the first two terms of 𝑉 are precisely as in the SM.
Adding the latter four terms yields the Higgs potential of the DCxSM. The DCxSM has a
global U(1) symmetry corresponding to the transformation 𝑆 → 𝑒𝑖𝛼𝑆 that is softly broken
by the last two terms of the potential (2.1).

For the potential to be stable (that is, to tend to plus infinity for |𝐻|, |𝑆| → ∞), it is
required that [18]

𝜆H > 0, 𝜆S > 0, 𝜆HS > −
√︀

𝜆H𝜆S . (2.2)

The vacuum expectation values (VEVs) of the fields 𝐻 and 𝑆 are chosen to be

⟨𝐻⟩ = 1√
2

(︂
0
𝑣

)︂
, ⟨𝑆⟩ = 𝑣S√

2
, (2.3)

with 𝑣 and 𝑣S being real and positive. By definition, the VEVs are minima of the potential
and thus fulfill the tadpole conditions

𝜕𝑉

𝜕𝐻

⃒⃒⃒⃒
VEV

= 0 ⇐⇒ 𝑇H ≡ 𝑣

2
(︀
−𝜇2

H + 𝜆H𝑣2 + 𝜆HS𝑣2
S
)︀

= 0 ,

𝜕𝑉

𝜕𝑆

⃒⃒⃒⃒
VEV

= 0 ⇐⇒ 𝑇S ≡ 𝑣S
2
(︀
−𝜇2

S + 𝜆S𝑣2
S + 𝜆HS𝑣2 − 𝑚2

𝜒

)︀
= 0 .

(2.4)

The specification “VEV” in these equations means that 𝐻 and 𝑆 are replaced by their VEVs
⟨𝐻⟩ and ⟨𝑆⟩ from Eq. (2.3), respectively. As at higher-order in perturbation theory the
tadpole parameters 𝑇H and 𝑇S need to be renormalized (see Sec. 4.3), which is why we will
not set them to zero in the subsequent equations.
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4 Chapter 2 The Lagrangian and Parameters of the DCxSM

Expanding the fields 𝐻 and 𝑆 about their VEVs yields

𝐻 =
(︃

𝐺+
1√
2
(︀
𝑣 + 𝜑H + 𝑖𝐺0)︀

)︃
, 𝑆 = 1√

2
(𝑣S + 𝜑S + 𝑖𝜒) (2.5)

in terms of real fields 𝜑H, 𝐺0, 𝜑S and 𝜒 and a complex field 𝐺+. 𝜑H and 𝜑S are the Higgs
boson fields in the gauge basis. 𝐺+ and 𝐺0 are the massless charged and neutral Goldstone
bosons, respectively.

Plugging the expansion (2.5) into the potential (2.1) and using the definitions (2.4) to
replace 𝜇H and 𝜇S by 𝑇H, 𝑇S, 𝑣 and 𝑣S, the potential becomes

𝑉 = 𝑉0 + 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 , (2.6)

where

𝑉1 = 𝑇H 𝜑H + 𝑇S 𝜑S , (2.7)

𝑉2 = 1
2(𝜑H, 𝜑S) ℳ2

𝑇

(︂
𝜑H
𝜑S

)︂
+ 1

2

(︂
𝑚2

𝜒 + 1
𝑣S

𝑇S

)︂
𝜒2 + 1

𝑣
𝑇H |𝐺+|2 + 1

2𝑣
𝑇H (𝐺0)2 ,

(2.8)

𝑉3 = 1
2
(︀
𝜆H𝑣 𝜑3

H + 𝜆S𝑣S 𝜑3
S
)︀

+ 1
2𝜆HS

(︀
𝑣S 𝜑2

H𝜑S + 𝑣 𝜑H𝜑2
S + 𝑣 𝜑H𝜒2)︀

+ 1
2𝜆S𝑣S 𝜑S𝜒2 + 1

2 (𝜆H𝑣 𝜑H + 𝜆HS𝑣S 𝜑S)
(︀
2|𝐺+|2 + (𝐺0)2)︀ ,

(2.9)

𝑉4 = 1
8
(︀
𝜆H 𝜑4

H + 𝜆S 𝜑4
S + 𝜆S 𝜒4 + 4𝜆H |𝐺+|4 + 𝜆H (𝐺0)4)︀

+ 1
4
(︀
𝜆HS 𝜑2

H𝜑2
S + 𝜆HS 𝜑2

H𝜒2 + 𝜆S 𝜑2
S𝜒2)︀

+ 1
4
(︀
𝜆H 𝜑2

H + 𝜆HS 𝜑2
S + 𝜆HS 𝜒2)︀ (︀2|𝐺+|2 + (𝐺0)2)︀+ 1

2𝜆H |𝐺+|2(𝐺0)2

(2.10)

and 𝑉0 contains all constant terms (without any fields). The squared mass matrix ℳ2
𝑇 in

Eq. (2.8) is given by

ℳ2
𝑇 = ℳ2 + 𝒯 , ℳ2 =

(︂
𝜆H𝑣2 𝜆HS𝑣𝑣S

𝜆HS𝑣𝑣S 𝜆S𝑣2
S

)︂
, 𝒯 =

(︂
𝑇H/𝑣 0

0 𝑇S/𝑣S

)︂
. (2.11)

The matrix ℳ2 can be diagonalized by an orthogonal matrix

𝑅(𝛼) ≡
(︂

cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

)︂
(2.12)

such that

𝑀2 ≡ 𝑅(𝛼) ℳ2 𝑅−1(𝛼) =
(︂

𝑚2
1 0

0 𝑚2
2

)︂
,

(︂
ℎ1
ℎ2

)︂
≡ 𝑅(𝛼)

(︂
𝜑H
𝜑S

)︂
, (2.13)
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where ℎ1 and ℎ2 are the Higgs mass eigenstates. The eigenvalues of ℳ2, i. e. the squared
mass values of the Higgs mass eigenstates, are given by

𝑚2
1,2 = 1

2𝜆H𝑣2 + 1
2𝜆S𝑣2

S ∓ 1
2

√︁(︀
𝜆H𝑣2 − 𝜆S𝑣2

S
)︀2 + (2𝜆HS𝑣𝑣S)2 , (2.14)

such that 𝑚2
1 < 𝑚2

2. Finally, the following identities for the Higgs mass mixing angle 𝛼 can
be derived from (2.13) (see App. A),

tan 2𝛼 = 2𝜆HS𝑣𝑣S
𝜆H𝑣2 − 𝜆S𝑣2

S
,

sin 2𝛼 = −2𝜆HS𝑣𝑣S
𝑚2

2 − 𝑚2
1

,

cos 2𝛼 = 𝜆S𝑣2
S − 𝜆H𝑣2

𝑚2
2 − 𝑚2

1
.

(2.15)

The Higgs sector potential (2.1) of the DCxSM has six independent real parameters: The
mass parameters 𝜇2

H, 𝜇2
S and 𝑚2

𝜒 as well as the quartic couplings 𝜆H, 𝜆S and 𝜆HS. By the
minimization conditions (2.4), the parameters 𝜇2

H and 𝜇2
S can be replaced by a combination

of 𝑣, 𝑣S, 𝑇H and 𝑇S. Furthermore, due to the Eqs. (2.14) and (2.15), it is possible to exchange
𝜆H, 𝜆S and 𝜆HS in favor of 𝑚2

1, 𝑚2
2 and 𝛼 as follows,

𝜆HS = −𝑚2
2 − 𝑚2

1
2𝑣𝑣S

sin 2𝛼 ,

𝜆H = 𝑚2
2 sin2 𝛼 + 𝑚2

1 cos2 𝛼

𝑣2 ,

𝜆S = 𝑚2
2 cos2 𝛼 + 𝑚2

1 sin2 𝛼

𝑣2
S

.

(2.16)

This leads to the following set of eight independent parametersin the Higgs sector,

𝑣 , 𝑣S , 𝛼 , 𝑚2
1 , 𝑚2

2 , 𝑚2
𝜒 , 𝑇H , 𝑇S . (2.17)

The tadpoles 𝑇H and 𝑇S are fixed during renormalization in Sec. 4.3. Moreover, 𝑣 ≈
246 GeV [11] is the VEV of the SM-like Higgs boson and one of the masses 𝑚1 or 𝑚2 is
identified as its mass of 125 GeV [19]. Therefore, only the following four parameters of the
DCxSM are truly free in the sense that their values are yet unknown and would have to be
fixed by future experiments,

𝑣S , 𝛼 , 𝑚2
1 or 𝑚2

2 , 𝑚2
𝜒 . (2.18)

The Higgs sector potential (2.1) is symmetric under the transformation 𝑆 → 𝑆*. Conse-
quently, the potential in the form of Eqs. (2.6)–(2.10) (that is, after electroweak symmetry
breaking) is symmetric under the transformation 𝜒 → −𝜒. This Z2 symmetry ensures that
the particle represented by the field 𝜒 cannot decay into other particles: it is stable. Moreover,
𝜒 has a non-zero mass 𝑚𝜒. Hence, 𝜒 represents a stable DM candidate [17].
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Since 𝜒 is a pseudo Goldstone boson, this type of a DM particle is also called pseudo
Goldstone Dark Matter [17]. In the DCxSM, the DM candidate 𝜒 interacts with particles of
the Higgs sector only, which is why the DCxSM is a Higgs-portal model [20]. Being introduced
as a particle of the weak sector, the DCxSM DM candidate 𝜒 also falls into the category of
WIMPs.



CHAPTER 3
Dark Matter Direct Detection

It is assumed that galaxies are generally enveloped by a DM halo, in which all visible
structures of the galaxy are embedded [21, 22]. While traveling around the sun and together
with the sun around the center of the milky way, the earth moves through this DM halo.
Since DM is only weakly interacting, most of the DM goes through the earth without any
effect. In order to investigate the properties of the DM particles, the rare interactions between
them and ordinary matter have to be observed.

There are three distinctive types of DM–SM interactions that require different experimental
setups to detect the effect of a DM particle: Production at colliders, Indirect Detection and
Direct Detection. These three different processes are visualized in Fig. 3.1.

The Production channel can be exploited using particle colliders: The scattering of two
SM particles might produce DM particles; although they cannot be directly detected by the
particle detectors of the collider, one can infer their existence and properties from the missing
energy–momentum that they carry away. Such searches are carried out for example at the
LHC at CERN. So far, the observations are consistent with the SM expectations and no
production of DM particles has been observed. Future runs of the LHC will further increase
the sensitivity for the detection of DM production [24].

DM searches making use of the Indirect Detection channel look for SM particles that have
been produced by the annihilation or decay of DM particles. Such events happen most
probably in dense regions of the universe – like the center of the Milky Way or our sun – and
might for example produce gamma rays that can be detected by telescopes like VERITAS
[25]. Neutrino detectors like IceCube or Super-Kamiokande are currently looking for DM
annihilation into neutrinos [26, 27].

In this thesis, the channel of Direct Detection is considered. Direct Detection experiments
aim for detecting the rare events when a DM particle does not go through the earth without

𝜒 𝜒

SM SM

Production

Direct Detection

Indirect Detection

Figure 3.1: Channels for DM detection. 𝜒 is the DM particle and SM stands for any SM particle
(or a nucleus or nucleon that is composed of SM particles). Diagram inspired by [23].

7



8 Chapter 3 Dark Matter Direct Detection

any effect but scatters off a nucleus from the target material of the detector. The target
material can be either solid, like for example the NaI(Tl) crystals of the DAMA experiment
[28], or liquid, like the xenon of the Xenon100 experiment [29]. In both cases, the atoms
of the target material are excited by the scattering with a DM particle and the subsequent
de-excitation causes the emission of light, which is in turn measured by photomultipliers that
are installed around the target material [23]. Some more details about these experiments as
well as their current results are given in Sec. 3.5.

In Sec. 3.1, the kinematics of Direct Detection scattering is examined. After that, in
Secs. 3.2 and 3.3, it is worked out how the measurable detection rate is linked to the
scattering cross section and amplitude. In this work, the formalism of Effective Field Theory
is employed to handle the results standardized way and to incorporate nuclear physics. This
formalism and its application to the computation of the Direct Detection cross section in the
DCxSM is introduced in Sec. 3.4. Finally, Sec. 3.6 provides a short introduction about the
consideration of the relic density.

3.1 Kinematics
The detector material of typical Direct Detection experiments is kept at a low temperature.
For example, the detector material of the Xenon100 experiment uses 62 kg of liquid xenon
as a target material that is kept at a temperature of 𝑇 = −91 ∘C [29]. Therefore, the target
nuclei can be treated at rest initially [30].

Since the DM halo is a gravitationally bound object, the velocity of the DM particles can
be assumed to be smaller than the escape velocity of the galaxy. In 2006, the RAVE survey
found a likeliest value for this escape velocity of 𝑣esc = 544 km/s ≈ 2 · 10−3 𝑐 [31], implying
that a non-relativistic treatment of the Direct Detection kinematics is justified.

Let p be the initial three-momentum1of the DM particle, p′ its final momentum, q0 = 0
the vanishing initial momentum of the nucleus and q𝑁 ≡ p − p′ the momentum transfer,
which equals the final momentum of the nucleus. In this chapter, the letter 𝑁 will represent
the nucleus and 𝜒 will be the DM particle. The generic Feynman diagram of this process is
depicted in Fig. 3.2.

The initial and final energies of the system are

𝐸𝑖 = p2

2𝑚𝜒
, 𝐸𝑓 = (p − q𝑁 )2

2𝑚𝜒
+ q2

𝑁

2𝑚𝑁
, (3.1)

𝜒 𝜒

𝑁 𝑁

p p′

q0 q𝑁

Figure 3.2: The process of Direct Detection. A DM particle 𝜒 interacts with a nucleus 𝑁 ,
which is initially at rest, i. e. q0 = 0. By transferring the momentum q𝑁 on the nucleus, the
momentum of the DM particle is changed from p to p′.

1 In contrast to four-momenta, three-momenta are printed in bold type in this work.
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where 𝑚𝑁 is the mass of the nucleus and 𝑚𝜒 is the mass of the DM particle. Using these
expressions, it immediately follows from energy conservation 𝐸𝑖 = 𝐸𝑓 that

2𝜇𝑁 p · q𝑁 = 𝑚𝜒q2
𝑁 , (3.2)

where 𝜇𝑁 is the reduced mass of the nucleus and the DM particle. If 𝜃 is the angle
between p and q𝑁 (note that this is not the scattering angle as it is usually defined), then
p · q𝑁 = |p||q𝑁 | cos 𝜃 implies that

|q𝑁 | = 2𝜇𝑁 𝑣 cos 𝜃 , (3.3)

where 𝑣 ≡ |p|/𝑚𝜒 is the initial velocity of the DM particle. The recoil energy 𝐸𝑅, which
equals the final kinetic energy of the nucleus in this case, can thus be given by [30]

𝐸𝑅 = |q𝑁 |2

2𝑚𝑁
= 2𝜇2

𝑁 𝑣2

𝑚𝑁
cos2 𝜃 . (3.4)

The larger this recoil energy is, the easier is its detection. The recoil energy depends on
the mass of the target nucleon 𝑚𝑁 and it is therefore an obvious goal to choose a suitable
target that maximizes the recoil energy. The maximum of 𝐸𝑅 w. r. t. 𝑚𝑁 is easily found by
solving 𝑑𝐸𝑅/𝑑𝑚𝑁 = 0 for 𝑚𝑁 , the result being 𝑚𝑁 = 𝑚𝜒 [32]. Hence, under the assumption
that the DM particle is heavy (like for the well-motivated WIMPs [29]), heavy target nuclei
– such as xenon, which is the heaviest non-radioactive noble gas – are required to obtain a
large recoil energy.

The largest possible recoil energy in a Direct Detection experiment is therefore given by2

𝐸max
𝑅 = 𝐸𝑅|𝜃→0

𝑚𝑁 →𝑚𝜒
= 1

2𝑚𝜒𝑣2 < 2 · 10−6 𝑚𝜒 , (3.5)

where in the last step 𝑣 < 𝑣esc was assumed. This maximum recoil energy corresponds to a
maximum momentum transfer of

|q𝑁 |max = 𝑚𝜒𝑣 < 2 · 10−3 𝑚𝜒 . (3.6)

The momentum transfer is therefore small compared to the DM mass. The approximation of
setting the momentum transfer to zero is perfectly valid. While the derivations in the rest of
this chapter will be kept general, this approximation will be employed for the computation of
the matrix elements in Chapter 5.

For a given (measured) recoil energy 𝐸𝑅, the minimum DM velocity 𝑣min that can lead to
this recoil energy (at 𝜃 = 0) is given by [30]

𝑣min =
√︂

𝑚𝑁

2𝜇2
𝑁

𝐸𝑅 , (3.7)

2 In [32] the same estimation is done with a slightly different upper bound for 𝑣 and hence slightly different
results.
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as can be derived from Eq. (3.4).
Note that the possibility of the nucleus being raised to an excited state due to the scattering

or any influence of the electrons of the target atom are usually neglected in Direct Detection
computations. An introductory discussion and further references on these aspects can be
found in [30].

3.2 The Detection Rate
In an (ideal) Direct Detection experiment each scattering between a DM particle and a target
nucleus is detected and the recoil energy of this scattering is measured. This data corresponds
to the physical quantity differential detection rate per recoil energy 𝑑ℛ/𝑑𝐸𝑅.

On the theory side, the detection rate ℛ of a scattering experiment with incoming scatter
particles 𝜒 scattering and target particles 𝑁 is given by [33]

ℛ = 𝑁𝑁 𝑗𝜒 𝜎𝑁 , (3.8)

where 𝑁𝑁 is the total number of target particles, 𝑗𝜒 is the particle flux (the rate of incoming
DM particles per area) and 𝜎𝑁 is the scattering cross section. The particle flux can be given
as particle number density 𝑛𝜒 times their velocity 𝑣, that is 𝑗𝜒 = 𝑛𝜒𝑣. The velocity of the
DM particles is described by some velocity distribution 𝑓(v). For Direct Detection, one is
interested in the distribution 𝑓(v) in the reference frame of the detector. Thus, also effects
like the velocity modulation due to the rotation of the earth around the sun or the movement
of the sun in the milky way should be taken into account upon proposing some specific form
for 𝑓(v) [30, p. 55].

Whatever the specific form of 𝑓(v) may be, one needs to take the average over 𝑣 to find
the total detection rate ℛ. Since 𝜎𝑁 generally also depends on the velocity of the incoming
particles, it needs to be included in this average [33],

ℛ = 𝑁𝑁 𝑛𝜒 ⟨𝑣 𝜎𝑁 ⟩ ≡ 𝑁𝑁 𝑛𝜒

ˆ

𝑣>𝑣min

𝑑3𝑣 𝑣 𝜎𝑁 𝑓(v) . (3.9)

The integral has a lower bound because velocities smaller than 𝑣min are kinematically excluded,
as it was derived in the end of Sec. 3.1. In principle, the integral does not have an upper
bound, but effectively there will be some upper integration bound due to the fact that 𝑓(v)
vanishes for velocities that correspond to velocities larger than 𝑣esc in the reference frame of
the milky way.

In practice, one is usually more interested in the differential detection rate per recoil energy
per total target mass. Let us therefore define the detection rate per target mass 𝑅 ≡ ℛ/𝑀 .
The quantity of interest will then be [23]

𝑑𝑅

𝑑𝐸𝑅
= 1

𝑀

𝑑ℛ
𝑑𝐸𝑅

= 𝜌𝜒

𝑚𝑁 𝑚𝜒

⟨
𝑣

𝑑𝜎𝑁

𝑑𝐸𝑅

⟩
, (3.10)

where 𝑚𝑁 = 𝑀/𝑁𝑁 is the mass of a single target nucleus and 𝜌𝜒 = 𝑛𝜒𝑚𝜒 is the (local) DM
mass density. The value for 𝜌𝜒 needs to be taken from cosmological measurements (for details
see Sec. 3.6). The present work only deals with the particle physics content of this detection
rate, namely the cross section 𝜎𝑁 .
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3.3 The Cross Section
The differential cross section for 2 → 2 scattering with the associated four-momenta 𝑝, 𝑞0 →
𝑝′, 𝑞𝑁 of the external particles is given by [34, 35]

𝑑𝜎𝑁 = |ℳ𝑁 |2

4𝐸𝜒𝐸𝑁 |𝑣 − 𝑣𝑁 |
𝑑3𝑝′

(2𝜋)32𝐸′
𝜒

𝑑3𝑞𝑁

(2𝜋)32𝐸′
𝑁

· (2𝜋)4𝛿(4)(𝑝 + 𝑞0 − 𝑝′ − 𝑞𝑁 ) , (3.11)

where ℳ𝑁 is the corresponding scattering amplitude. For the case of Direct Detection
scattering, 𝐸𝜒 and 𝐸𝑁 are the initial energies of the DM particle and the nucleon, respectively,
and 𝐸′

𝜒 and 𝐸′
𝑁 are their final energies. In the non-relativistic limit, these energies can

be approximated by the corresponding masses. The momenta 𝑝, 𝑞0, 𝑝′ and 𝑞𝑁 are the
four-momenta corresponding to the three-momenta from Fig. 3.2.3 Since the nucleus is at
rest, one can also set 𝑣𝑁 ≈ 0. Using the abbreviation ℳ̃𝑁 ≡ ℳ𝑁 /(4𝑚𝜒𝑚𝑁 ) and spherical
coordinates for the integration over q𝑁 , Eq. (3.11) can be brought into the following form
[30]:

𝑑𝜎𝑁 = |ℳ̃𝑁 |2

2𝜋𝑣
𝑑3𝑝′ (︀|q𝑁 |2 𝑑cos 𝜃 𝑑|q𝑁 |

)︀
𝛿(4)(𝑝 + 𝑞0 − 𝑝′ − 𝑞𝑁 )

= |ℳ̃𝑁 |2

4𝜋𝑣
𝑑3𝑝′ (︀|q𝑁 | 𝑑cos 𝜃 𝑑|q𝑁 |2

)︀
𝛿(𝐸𝑖 − 𝐸𝑓 ) 𝛿(3)(p + p′ − q𝑁 )

= |ℳ̃𝑁 |2

4𝜋𝑣

(︀
|q𝑁 | 𝑑cos 𝜃 𝑑|q𝑁 |2

)︀
𝛿(𝐸𝑖 − 𝐸𝑓 )

= |ℳ̃𝑁 |2

4𝜋𝑣

(︀
𝑑cos 𝜃 𝑑|q𝑁 |2

)︀
𝛿(cos 𝜃 − |q𝑁 |/(2𝜇𝑁 𝑣)) .

(3.12)

The implicit integral over the polar angle was already evaluated in the first step. In the last
step, it was used that

𝐸𝑖 − 𝐸𝑓 = 𝑣|q𝑁 |
(︂

cos 𝜃 − |q𝑁 |
2𝜇𝑁 𝑣

)︂
(3.13)

as well as 𝛿(𝑎𝑥) = 𝑎−1𝛿(𝑥).
The total cross section is now easily obtained by integration [30],

𝜎𝑁 = |ℳ̃𝑁 |2

4𝜋𝑣2

ˆ 1

−1
𝑑cos 𝜃

ˆ ∞

0
𝑑|q𝑁 |2 𝛿(cos 𝜃 − |q𝑁 |/(2𝜇𝑁 𝑣))

= |ℳ̃𝑁 |2

4𝜋𝑣2

ˆ ∞

0
𝑑|q𝑁 |2 𝜃(2𝜇𝑁 𝑣 − |q𝑁 |)

= 𝜇2
𝑁

𝜋
|ℳ̃𝑁 |2 .

(3.14)

Note that the integration range of cos 𝜃 restricts the integration range of 𝑑|q𝑁 |2 to the

3 Note that here, in contrast to Sec. 3.1, all energies are not only the kinetic energies but the total relativistic
energies that include the rest energy. The four-momentum of the incoming nucleon is 𝑞0 = (𝑚𝑁 , 0) in the
approximation of the nucleon being at rest initially.
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kinetmatically allowed values of |q𝑁 | according to Eq. (3.3). In Sec. 3.1 it was shown that this
interval is much smaller than the scale of the scattering process. Hence, it can be assumed
that the amplitude ℳ̃𝑁 is approximately constant within the integration range – more
specifically, the momentum transfer can be set to zero in the amplitude ℳ̃𝑁 . Furthermore,
this justifies that ℳ̃𝑁 was pulled out of the integral in Eq. (3.14).

For the differential detection rate (3.10), the derivative 𝑑𝜎𝑁 /𝑑𝐸𝑅 is required. Using
𝑑|q𝑁 |2/𝑑𝐸𝑅 = 2𝑚𝑁 , which follows from Eq. (3.4), this derivative is easily obtained from
Eq. (3.12),

𝑑𝜎𝑁

𝑑𝐸𝑅
= 𝑚𝑁

2𝜋𝑣2 |ℳ̃|2 𝑑cos 𝜃 𝛿(cos 𝜃 − |q𝑁 |/(2𝜇𝑁 𝑣))

= 𝑚𝑁

2𝜋𝑣2 |ℳ̃|2 𝜃(2𝜇𝑁 𝑣 − |q𝑁 |)

= 𝑚𝑁 𝜎𝑁

2𝑣2𝜇2
𝑁

𝜃(𝑣 − 𝑣min) .

(3.15)

In the last step, the amplitude was replaced by the cross section using Eq. (3.14). 𝑣min has
been given in Eq. (3.7). This result can now be plugged into the formula for the differential
detection rate, Eq. (3.10). Note that the lower limit for the velocity as dictated by the
heaviside 𝜃 function in Eq. (3.15) has already been implemented in the definition of the
velocity average in Eq. (3.9).

So far, the specific interactions that lead to the interaction of the DM particle with the
nucleon have been treated as a black box on the level of the nucleon. That black box was
called “amplitude ℳ𝑁 ” or alternatively “cross section 𝜎𝑁 ”. It is desirable, however, to
rather work on the level of nucleons 𝑛 instead of nuclei 𝑁 because the results will then be
independent of the used target material. Interestingly, the whole derivation of this section
works exactly in the same way also for the scattering between DM and a nucleon instead of
a nucleus. Simply replace all 𝑁 by 𝑛. One can therefore conclude that Eq. (3.14) can be
translated directly to the level of nucleon scattering [30],

𝜎𝑛 = 𝜇2
𝑛

𝜋
|ℳ̃𝑛|2 , (3.16)

where 𝜇𝑛 is the reduced mass of the DM particle and the nucleon. Further steps on how the
amplitude ℳ𝑛 is computed are provided in Sec. 3.4. The remainder of the current section is
dedicated to the question of how 𝜎𝑁 is related to 𝜎𝑛.

An effective Lagrangian for the scattering of two DM particles 𝜒 and a nucleon 𝑛 and its
antinucleon 𝑛̄ looks like

Leff = 𝛼𝑛𝜒2𝑛̄𝑛 , (3.17)

where 𝑛 is the nucleon spinor field and

𝛼𝑛 = 𝜕4Leff
𝜕𝜒2 𝜕𝑛̄ 𝜕𝑛

(3.18)

is the effective coupling. The amplitude ℳ𝑛 that follows from a Lagrangian (3.17) for the
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scattering of the DM particle and the nucleon is

𝛼𝑛

𝜒 𝜒

𝑛 𝑛

= 𝑖ℳ𝑛 = 𝑖𝛼𝑛𝑢̄𝑛𝑢𝑛 = 𝑖 · 2𝑚𝑛𝛼𝑛 , (3.19)

where it was used that the spinors of the nucleon 𝑢̄𝑛 and 𝑢𝑛 depend on the same momentum
due to the limit of vanishing momentum transfer and hence 𝑢̄𝑛𝑢𝑛 can simply be replaced by
its normalization 2𝑚𝑛. By analogy, let the effective coupling of the nucleus scattering be
related to the nucleus amplitude as ℳ𝑁 = 2𝑚𝑁 𝛼𝑁 .

For spin-independent scattering, the couplings to the nucleon 𝛼𝑛 and to the nucleus 𝛼𝑁

can be related by a form factor 𝐹 (𝑞) as 𝛼𝑁 = 𝐴𝑛 𝛼𝑛 𝐹 (𝑞) and hence the amplitudes obey
ℳ̃𝑁 = 𝐴𝑛 ℳ̃𝑛 𝐹 (𝑞), where 𝐴𝑛 is the number of nucleons of type 𝑛 in the nucleus. If one
distinguishes between protons and neutrons, a sum over 𝑛 ∈ {proton, neutron} is implied.
Using Eq. (3.14), one arrives at [36]

𝜎𝑁 = 𝜇2
𝑁

𝜋
|𝑍ℳ̃proton + (𝐴 − 𝑍)ℳ̃neutron|2|𝐹 (𝑞)|2 , (3.20)

where 𝑍 ≡ 𝐴proton is the number of protons and 𝐴 − 𝑍 ≡ 𝐴neutron the number of neutrons in
the nucleus.4 The approximation ℳ̃neutron ≈ ℳ̃proton yields with Eq. (3.16)

𝜎𝑁 = 𝜇2
𝑁

𝜇2
𝑛

𝐴2𝜎𝑛|𝐹 (𝑞)|2 (3.21)

for either 𝑛 = proton or 𝑛 = neutron. In the limit of small momentum transfer, the
approximation 𝐹 (𝑞 ≈ 0) ≈ 1 is valid [36].

In terms of the effective coupling 𝛼𝑛, the nucleon cross section from Eq. (3.16) reads

𝜎𝑛 = 1
4𝜋

(︂
𝑚𝑛

𝑚𝜒 + 𝑚𝑛

)︂2
|𝛼𝑛|2 . (3.22)

In order to give a result that is independent of detector properties (like the isotope of the
target nucleus), only results for the nucleon cross section 𝜎𝑛 are given in this thesis. Using
Eqs. (3.10), (3.15) and (3.21), it is straightforward to obtain the corresponding differential
detection rate 𝑑𝑅/𝑑𝐸𝑅 for specific experimental setups and assumptions for cosmological
quantities.

3.4 The Nucleon Cross Section in Effective Field Theory
Microscopically, when DM particles scatter off nucleons, they scatter off quarks or gluons,
since those are the elementary constituents. In this section, the connection between the
nucleon cross section 𝜎𝑛 and amplitudes of scattering processes of elementary particles, which
can be computed by QFT is presented.

4 The spin-dependent pendant to Eq. (3.20) is given in [36].
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For the purpose of a standardized handling of results and the incorporation of nuclear
physics, the formalism of Effective Field Theory (EFT) will be employed in this work. The
following lines give a brief introduction to how the computational results of Direct Detection
are matched to in an effective Lagrangian.5

Effectively, the scattering of a DM particle 𝜒 and a quark 𝑞 can be described by an
interaction term 𝐶𝜒2𝑞𝑞 in an effective Lagrangian, where 𝐶 is some constant, called Wilson
Coefficient. This term describes a 𝜒2𝑞𝑞 vertex that comes with the Feynman rule

𝜒 𝜒

𝑞 𝑞

= 2𝑖𝐶 . (3.23)

Then, matching the full process of the scattering 𝜒 + 𝑞 → 𝜒 + 𝑞 to the corresponding term in
the effective Lagrangian requires that the amplitude is computed twice: Once simply with
the effective vertex (which is trivial; the result is simply 2𝑖𝐶) and once within the actual
model, DCxSM in this thesis (which is not trivial, since loop corrections occur). By equating
both results, 𝐶 can be extracted. Thereby, the previously unknown parameter of the effective
Lagrangian has been found explicitly and the EFT is set up.

The explicit computation of the diagrams and hence the computation of 𝐶 is done in the
subsequent chapters. In the remainder of the present chapter, 𝐶 is is assumed to be known
and it is investigated how the nucleon cross section 𝜎𝑛 is constructed from 𝐶.

In practice, a few complications arise in the picture of the EFT that has been drawn in
the paragraph above. To beginn with, not only the coupling of the DM to quarks is relevant,
but also the one to gluons. Thus, a term like 𝐶𝜒2𝑞𝑞 will not be the only one that appears in
the effective Lagrangian, but there will also be a term proportional to 𝜒2𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈 , where
𝐺𝑎

𝜇𝜈 is the field-strength tensor of the gluon. And secondly, the amplitude that is computed
from the actual DCxSM might (and will) depend on external momenta. These momentum
dependent terms of the amplitude are described by derivatives of fields in the Lagrangian.
Hence, yet more terms have to be added to the effective Lagrangian.

For this work, the following effective Lagrangian is sufficient to describe all the possible
diagrams that will be encountered in the DCxSM Direct Detection spin-independent scattering
process [17],6

Leff =
∑︁

𝑞

𝐶𝑞
𝑆𝒪𝑞

𝑆 + 𝐶𝑔
𝑆𝒪𝑔

𝑆 +
∑︁

𝑞

𝐶𝑞
𝑇 𝒪𝑞

𝑇 , (3.24)

where

𝒪𝑞
𝑆 = 𝑚𝑞𝜒2𝑞𝑞 , (3.25)

𝒪𝐺
𝑆 = 𝛼𝑠

𝜋
𝜒2𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈 , (3.26)

5 For a detailed introduction see [36] and the references therein.
6 In general also a twist term for the gluons exists (see [17]), but for the computation in this work it does

not contribute.
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𝒪𝑞
𝑇 = 1

𝑚2
𝜒

𝜒 𝑖𝜕𝜇 𝑖𝜕𝜈 𝜒
1
2 𝑖𝑞

(︂
𝜕𝜇𝛾𝜈 + 𝜕𝜈𝛾𝜇 − 1

2𝑔𝜇𝜈 /𝜕

)︂
𝑞⏟  ⏞  

≡ 𝒪𝑞
𝜇𝜈

. (3.27)

Here, 𝛾𝜇 is the Dirac gamma matrix and 𝑔𝜇𝜈 the metric tensor. The index 𝑆 denotes scalar
contributions and the index 𝑇 stands for twist contributions. 𝒪𝑞

𝜇𝜈 is the twist-2 operator [35,
37].

By differentiating the individual terms of Leff twice w. r. t. 𝜒 and dropping the fields of the
nucleon particles (i. e. quarks and gluons), the Wilson coefficients 𝐶𝑞,𝑔

𝑆 can be related to the
“𝜒 part” of the corresponding effective couplings 𝛼𝑞,𝑔

𝑆 ,

𝐶𝑞
𝑆𝒪𝑞

𝑆 = 𝐶𝑞
𝑆𝑚𝑞𝜒2𝑞𝑞 =⇒ 𝛼𝑞

𝑆 = 2𝐶𝑞
𝑆𝑚𝑞 , (3.28)

𝐶𝑔
𝑆𝒪𝑔

𝑆 = 𝐶𝑔
𝑆

𝛼𝑠

𝜋
𝜒2𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈 =⇒ 𝛼𝑔
𝑆 = 𝐶𝑔

𝑆

2𝛼𝑠

𝜋
. (3.29)

If the current state of the nucleon is denoted as a ket |𝑛⟩, then ⟨𝑛|𝑞𝑞|𝑛⟩ can be interpreted
as the probability to find a quark 𝑞 in a nucleon 𝑛 [36]. The effective coupling to the nucleon,
𝛼𝑛, receives contributions from the coupling to the quark 𝛼𝑞

𝑆 and from the coupling to the
gluon 𝛼𝑔

𝑆 . These contributions are given by

𝛼𝑛 ⊃ ⟨𝑛|𝑞𝑞|𝑛⟩ 𝛼𝑞
𝑆 = 2𝑚𝑛𝑓𝑛

𝑞 𝐶𝑞
𝑆 , (3.30)

𝛼𝑛 ⊃ ⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝑎𝜇𝜈 |𝑛⟩ 𝛼𝑔

𝑆 = −16𝑚𝑛

9 𝑓𝑛
𝑔 𝐶𝑔

𝑆 , (3.31)

where [37]

𝑚𝑛𝑓𝑛
𝑞 ≡ ⟨𝑛|𝑚𝑞𝑞𝑞|𝑛⟩ , (3.32)

2𝑚𝑛

27 𝑓𝑛
𝑔 ≡

⟨
𝑛
⃒⃒⃒
− 𝛼𝑠

12𝜋
𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈
⃒⃒⃒
𝑛
⟩

. (3.33)

𝑓𝑛
𝑞 and 𝑓𝑛

𝑔 are form factors that are obtained from lattice QCD simulations [38]. In this work,
their values were taken from [37] and are given in Sec. 6.1.

Finally, consider the twist term of the effective Lagrangian (3.24). The contributions to 𝛼𝑛

in Eqs. (3.30) and (3.31) were written as the coupling prefactor of the effective Lagrangian
times the matrix element of the quark and gluon part, respectively. For the twist contribution,
this implies [37]

𝛼𝑛 ⊃ 𝐶𝑞
𝑇

2
𝑚2

𝜒

𝑝𝜇𝑝𝜈 ⟨𝑛|𝒪𝑞
𝜇𝜈 |𝑛⟩

= 𝐶𝑞
𝑇

2
𝑚2

𝜒

𝑝𝜇𝑝𝜈

(︂
1

𝑚𝑛

(︂
𝑃𝜇𝑃𝜈 − 1

4𝑚2
𝑛𝑔𝜇𝜈

)︂
(𝑞𝑛(2) + 𝑞𝑛(2))

)︂
≈ 3

2𝑚𝑛 (𝑞𝑛(2) + 𝑞𝑛(2)) 𝐶𝑞
𝑇 ,

(3.34)

where 𝑝 is the four-momentum of the DM particle, 𝑃 is the four-momentum of the nucleon
and hence 𝑝 · 𝑃 ≈ 𝑚𝑛𝑚𝜒 in the non-relativistic approximation. 𝑞𝑛(2) and 𝑞𝑛(2) are the
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second moments of a quark 𝑞 or an antiquark 𝑞, respectively. Just like 𝑓𝑛
𝑞 and 𝑓𝑛

𝑔 they are
numerical factors, whose values were taken from [37] in this work.

After adding up all these contributions to 𝛼𝑛 and plugging them into Eq. (3.22), the final
result is [17]

𝜎𝑛 = 1
𝜋

(︂
𝑚𝑛

𝑚𝜒 + 𝑚𝑛

)︂2
⃒⃒⃒⃒
⃒⃒ ∑︁
𝑞 = 𝑢, 𝑑, 𝑠

𝑚𝑛𝑓𝑛
𝑞 𝐶𝑞

𝑆 − 8
9𝑚𝑛𝑓𝑛

𝑔 𝐶𝑔
𝑆 + 3

4𝑚𝑛

∑︁
𝑞 = 𝑢, 𝑑, 𝑠, 𝑐, 𝑏

(𝑞𝑛(2) + 𝑞𝑛(2)) 𝐶𝑞
𝑇

⃒⃒⃒⃒
⃒⃒
2

.

(3.35)

The major contribution to this cross section comes from the light quarks 𝑞 = 𝑢, 𝑑, 𝑠. The
leading-order interaction between two gluons and two DM particles is mediated by a Higgs
boson and a quark loop (see Fig. 5.8). Since the masses of the heavy quarks 𝑄 = 𝑐, 𝑡, 𝑏
are larger than the relevant mass scale of Direct Detection, they need to be integrated out
(see Sec. 5.3.1). In the contribution from the twist-2 operator, that is in the last term of
the absolute square in Eq. (3.35), all quarks below an energy scale of ∼ 1 GeV have to be
included, i. e. all quarks but the top quark [39].

3.5 Current Limits of Direct Detection Experiments
Until today, none of the experiments aiming for the detection of DM has produced evidence
for the existence of a DM particle [48]. However, not finding a detection signal in a given
experimental constellation excludes certain regions of parameter spaces.

The first experiment that produced an exclusion limit in the DM mass–cross section
space was carried out in 1986 [13, 49]. Since then, many more experiments with increasing
sensitivity have been designed. Currently the experiments with the highest sensitivity are
based on liquid xenon detectors. Especially the LUX experiment in South Dakota, USA [41],
the PandaX experiment in Sichuan, China [40], and the Xenon experiments in Abruzzo,
Italy [29], have further and further increased the sensitivity of Direct Detection.

The most obvious way to increase the sensitivity of a Direct Detection experiment is to
increase the target mass. Thus, the Xenon collaboration started off with Xenon10 and
a target mass of 15 kg in 2006–2007 [42], went on with Xenon100 and a target mass of
62 kg in 2010–2014 [43] and arrived at Xenon1T with a target mass of 2 t in 2016–2017.
With the Xenon1T experiment, the detection limit for the cross section has come down to
5 × 10−47 cm2 for a DM mass of 50 GeV [44]. Since no signal has been detected, the parameter
space leading to higher cross sections can be excluded. The solid lines in Fig. 3.3 show the
exclusion limits of several xenon based Direct Detection experiments. They can be deduced
from the measured differential detection rate using Eq. (3.10) [23].

Currently, the next-generation Xenon10T experiment is constructed in Italy. It is expected
to lower the limit of the cross section by another order of magnitude [45]. Its prospective
limit is plotted as a dashed line in Fig. 3.3.

At even smaller cross sections (for example 10−49 cm2 at 50 GeV), a given signal could also
stem from the scattering between a neutrino and a target nucleus. Therefore, it would be
practically impossible to detect a DM particle using the Direct Detection channel if its cross
section lies within the gray neutrino background region (also called the neutrino floor) in
Fig. 3.3 [46].
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Figure 3.3: Limits of liquid xenon based Direct Detection Experiments. The parameter space
above the solid and dashed lines is excluded by the corresponding experiments. The dashed line
shows the prospective limit of the Xenon10T experiment. The gray region on the bottom of the
diagram is the neutrino floor, below which a signal could not be assigned to the influence of DM
any more due to the background from neutrino–xenon scattering. Data taken from [40–46], using
the tool [47].

3.6 The Relic Abundance
The relic abundance of DM (Ωℎ2)DM is a measure for the density of DM in the universe. It is
defined as the absolute DM density 𝜌DM divided by the critical density 𝜌𝑐 times the squared
dimensionless Hubble parameter ℎ,

(Ωℎ2)DM ≡ 𝜌DM
𝜌𝑐

ℎ2 . (3.36)

This relic density of the total amount of DM is measured by the Planck Collaboration,
yielding a value of [50]

(Ωℎ2)DM = 0.1186 ± 0.002 . (3.37)

The relic abundance (Ωℎ2)𝜒 for a specific DM candidate can be determined in the standard
freeze-out framework, for which the program library micrOMEGAs [51] is used to calculate
the predicted relic abundance for a specific model set-up. If the predicted relic density (Ωℎ2)𝜒

is smaller than the observed relic density (Ωℎ2)DM, the candidate 𝜒 may make up for only a
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portion of the total DM in the universe. Thus, the local mass density 𝜌𝜒 of the DM candidate
𝜒 is given by

𝜌𝜒 = 𝜌DM
𝜌𝜒

𝜌DM
≈ 𝜌DM

(Ωℎ2)𝜒

(Ωℎ2)DM
, (3.38)

where 𝜌DM is the local mass density of all DM. A value of 𝜌DM ≈ 0.4 GeV/cm3 complies with
many recent measurements [52].

Since experimental limits on DM–nucleon scattering (such as those in Fig. 3.3) are derived
assuming that the DM candidate is responsible for all the DM abundance in the universe, it
is the effective cross section [39]

𝜎eff
𝑛 ≡ 𝑓𝜒𝜒 𝜎𝑛 , where 𝑓𝜒𝜒 ≡ (Ωℎ2)𝜒

(Ωℎ2)DM
, (3.39)

that can directly be compared with these limits.



CHAPTER 4
Renormalization of the DCxSM

In this work, higher-order electroweak corrections to the Direct Detection process in the
DCxSM are computed. When turned into analytical expressions, the Feynman diagrams of
higher-order corrections contain integrals that typically diverge. However, it can be shown
that if all diagrams that describe a given physical process up to a given order in perturbation
theory are taken into account, these divergences always cancel in measurable observables [34].
In order to handle these divergences and to systematically organize their cancellations, it is
crucial to apply the machinery of renormalization.

This chapter presents how renormalization is applied to the next-to-leading-order (NLO)
corrections of the Direct Detection process in the DCxSM. In Sec. 4.1, the basic procedure
of renormalization is introduced for a simple toy model, the 𝜑4 theory. The subsequent
sections introduce the various generalizations and adjustments of this basic procedure that
are required to renormalize the DCxSM Direct Detection process.

The tree-level diagram of Direct Detection in the DCxSM is shown in Fig. 4.1a. The
higher-order corrections to this process that require renormalization can be classified into
three categories: Corrections to the Higgs propagator, corrections to the DM–Higgs vertices
𝜒𝜒ℎ𝑖 (𝑖 = 1, 2) as well as corrections to the quark–Higgs vertices 𝑞𝑞ℎ𝑖, as shown in Fig. 4.1b.

There are diagrams that contribute to the DCxSM Direct Detection but fall into neither of
these three categories: Box diagrams, which are finite and do not require renormalization, and
diagrams with external gluons, which can be related to corresponding diagrams with external
quarks and therefore do not require additional renormalization procedures. An overview over
all diagrams that contribute to DCxSM Direct Detection as well as the treatment of Box
diagrams and diagrams with external gluons is given in Chapter 5.

As it will be worked out in Sec. 4.1, during renormalization, all parameters of the theory
are split up into renormalized parameters and counterterms. The counterterms give rise to a
counterterm diagram for each of the corrections in Fig. 4.1b. They are presented in Fig. 4.2.
The goal of the current chapter is to compute these counterterm diagrams.

The renormalization of the Higgs propagator is presented in Sec. 4.2. In order to compute

𝜒 𝜒

𝑞 𝑞

a)
ℎ𝑖

𝜒 𝜒

𝑞 𝑞

b) 𝜒 𝜒

𝑞 𝑞

𝜒 𝜒

𝑞 𝑞

Figure 4.1: The tree-level diagram of Direct Detection in the DCxSM (a) as well as the three
types of higher-order corrections that require renormalization (b): Propagator corrections and
corrections to each of the two vertices of the tree-level diagram. The mediator is in any case a
Higgs boson, either ℎ1 or ℎ2.
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ℎ𝑖 ℎ𝑗

ℎ𝑖

𝜒 𝜒

ℎ𝑖

𝑞 𝑞

Figure 4.2: For each of the types of higher-order corrections in Fig. 4.1b, a counterterm is
required for its systematic renormalization.

the corresponding counterterm, also the renormalization of the tadpoles, which is worked out
in Sec. 4.3, has to be taken into account.

In order to renormalize the DM–Higgs vertices, the renormalization of the Higgs mixing angle
𝛼 is required, which is developed in Sec. 4.4. Additionally, the field-strength renormalization
of the DM field 𝜒 is needed, which is derived in Sec. 4.5. Using these ingredients, the vertex
counterterms are then computed in Sec. 4.6.

The renormalization of the quark–Higgs vertices depends on the renormalization of the
fermion propagator presented in Sec. 4.7 and on the renormalization of the gauge sector given
in Sec. 4.8. The counterterm for the quark–Higgs vertex is given in Sec. 4.9.

Finally, an overview over all results that are relevant for the subsequent chapters – especially
the explicit expressions for the diagrams in Fig. 4.2 – is given in Sec. 4.10.

4.1 Principles of Regularization and Renormalization
Before considering the renormalization of the DCxSM, let us recall the principles of regular-
ization and renormalization for the simplest possible example, the 𝜑4 theory. The Lagrangian
of the 𝜑4 theory with a real scalar field 𝜑0 and parameters 𝑚0 and 𝜆0 reads [34]

L = 1
2(𝜕𝜇𝜑0)2 − 𝑚2

0
2 𝜑2

0 − 𝜆0
4! 𝜑4

0 . (4.1)

In order to handle the divergences that come with loop integrals they are first isolated
using a new parameter, which is referred to as the regulator. This regularization is presented
in Sec. 4.1.1. The cancellation of the divergences in observables is then equivalent to the
cancellation of all terms that contain regulators. The procedure of systematically and
consistently canceling all divergences is called renormalization and introduced in Sec. 4.1.2.

4.1.1 Regularization
As an example for a divergent loop diagram in the 𝜑4 theory consider [34]

= − 𝑖𝜆

2

ˆ
𝑑4𝑘

(2𝜋)4
𝑖

𝑘2 − 𝑚2
0

. (4.2)

Performing a Wick rotation by substituting 𝑘0 → 𝑖𝑘0
𝐸 and k → k𝐸 turns the Minkowski

space four-vectors 𝑘𝜇 into vectors of Euclidean space 𝑘𝐸 = (𝑘0
𝐸 , k𝐸) (that is they obey
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𝑘2
𝐸 =

∑︀3
𝑖=0 𝑘𝑖

𝐸). Then, the integral can be evaluated in spherical coordinates,

= − 𝑖𝜆

2 · 𝑖

ˆ
𝑑4𝑘𝐸

(2𝜋)4
𝑖

−𝑘2
𝐸 − 𝑚2

0
= −4𝜋𝑖𝜆

2

ˆ ∞

0

𝑑𝑘𝐸

(2𝜋)4
𝑘3

𝐸

𝑘2
𝐸 + 𝑚2

0
. (4.3)

This integral is diverging at the upper integration bound as the integrand is proportional to
𝑘𝐸 for large 𝑘𝐸 (a divergence at the upper bound is called ultraviolet (UV) divergence).

In order to still evaluate such divergent integrals, they need to be regularized. This can be
done by imposing a cutoff parameter Λ to the upper integration bound as a regulator and
applying the limit Λ → ∞,

= −4𝜋𝑖𝜆

2

ˆ Λ

0

𝑑𝑘𝐸

(2𝜋)4
𝑘3

𝐸

𝑘2
𝐸 + 𝑚2

0
= − 𝑖𝜋𝜆

(2𝜋)4

(︂
Λ2 − 𝑚2

0 ln 𝑚2
0 + Λ2

𝑚2
0

)︂
. (4.4)

By taking the limit Λ → ∞, the divergence of the integral becomes explicit. If this regu-
larization procedure is applied consistently to all divergent integrals that contribute to an
observable, the regulator Λ will always cancel leaving the physical observable finite [53].

Regularizing divergent integrals with a cutoff parameter comes with the drawback that
symmetries of the theory are broken for finite values of Λ. Therefore, the method of
dimensional regularization is more commonly used as it preserves all symmetries of the theory
for any value of the regulator. In dimensional regularization no upper cutoff is introduced but
the integral is evaluated in 𝑑 = 4 − 2𝜀 dimensions instead of 4 dimensions. Thereby, 𝜀 serves
as the regulator and the applied limit is 𝜀 → 0 [54]. Evaluating the integral in Eq. (4.2) in 𝑑
dimensions yields [34]

= − 𝑖𝜆

2

ˆ
𝑑𝑑𝑘

(2𝜋)𝑑

𝑖

𝑘2 − 𝑚2
0

= 𝑖𝜆

2
1

(4𝜋)𝑑/2
1

𝑚2−𝑑
0

(︂
1
𝜀

+ 1 − 𝛾 + 𝒪(4 − 𝑑)
)︂

, (4.5)

where 𝛾 ≈ 0.577 is the Euler–Mascheroni constant. The divergence becomes explicit in the
limit 𝜀 → 0. In this work, the dimensional regularization method is used exclusively.

4.1.2 Renormalization
After all loop integrals have been regulated, renormalization provides the systematic cancella-
tion of the regulators and hence the divergences.

Let 𝑖Σ(𝑝2) be the sum of all one-particle irreducible (1PI) diagrams with two external legs,
that is the sum of all self-energy diagrams that cannot be separated into two parts by cutting
through a single line. In the 𝜑4 theory, this sum is given by [34]

𝑖Σ(𝑝2) = 1PI ≡ + + 𝒪(𝜆3
0) . (4.6)

Note that due to the divergent momentum integrals from the loops, Σ(𝑝2) is an infinite
quantity.
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The full propagator of a scalar field, including all possible forms of its self-interactions, is
then given by [34]

𝐺(𝑝2) ≡ + 1PI + 1PI 1PI + · · ·

= 𝑖

𝑝2 − 𝑚2
0 + Σ(𝑝2) .

(4.7)

It is known from the Källén–Lehmann spectral decomposition [34] that −𝑖𝐺(𝑝2) has a pole
with residue 𝑍 at the physical mass 𝑚2,

−𝑖𝐺(𝑝2) → 𝑍

𝑝2 − 𝑚2 for 𝑝2 → 𝑚2 . (4.8)

𝑍 is the field-strength renormalization constant and 𝑚 is the measurable particle mass [34].
In the vicinity of this pole, the denominator of 𝐺(𝑝2) of Eq. (4.7) has the form

𝑖𝐺−1(𝑝2) = 𝑚2 − 𝑚2
0 + Σ(𝑚2) +

(︃
1 + 𝜕Σ(𝑝2)

𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

)︃
(𝑝2 − 𝑚2) + 𝒪

(︀
(𝑝2 − 𝑚2)2)︀ . (4.9)

Comparing this expression with Eq. (4.8) reveals that [34]

𝑚2 − 𝑚2
0 + Σ(𝑚2) = 0 , 𝑍−1 = 1 + 𝜕Σ(𝑝2)

𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

. (4.10)

Hence, taking higher-order corrections into account, the physical mass 𝑚 obviously differs
from the mass parameter 𝑚0 in the Lagrangian, which is referred to as the bare mass [34].
By a similar procedure, a physical coupling constant 𝜆 is introduced that differs from the
bare coupling constant 𝜆0 (see [35]).

After computing the amplitude for a given process of the Lagrangian of 𝜑4 theory (4.1)
in terms of the bare parameters 𝑚0 and 𝜆0, these bare parameters can be replaced by their
physical counterparts 𝑚 and 𝜆 by Eq. (4.10) and an analog equation for 𝜆0 and the resulting
expression of the amplitude will be finite [34]. While this procedure always works, there is a
more systematic approach for consistently canceling all infinities. It is based on constructing
the renormalized Lagrangian from the bare Lagrangian in Eq. (4.1).

For that purpose, the renormalized field 𝜑 is introduced as

𝜑 ≡ 𝑍−1/2 𝜑0 (4.11)

and all free bare parameters as well as the field-strength renormalization constant are split
into renormalized parameters and counterterms,

𝑚2
0 = 𝑚2

𝑅 + 𝛿𝑚2 , 𝜆0 = 𝜆𝑅 + 𝛿𝜆 , 𝑍 = 1 + 𝛿𝑍 . (4.12)

While the renormalized parameters 𝑚2
𝑅 and 𝜆𝑅 are finite, the counterterms 𝛿𝑚2, 𝛿𝜆 and 𝛿𝑍

and hence also the bare parameters are infinite. In general, the value of 𝑚𝑅 can differ from
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the physical mass 𝑚 and depends on the renormalization scheme that is used. Equivalently,
by Eq. (4.12), the choice of a certain renormalization scheme also fixes the finite parts of the
counterterms.

The renormalized Lagrangian is constructed from the bare Lagrangian (4.1) by renormalizing
the field according to Eq. (4.11) and expressing the bare parameters by their renormalized
counterparts and the counterterms using Eq. (4.12),

L = 1
2𝑍(𝜕𝜇𝜑)2 − 𝑚2

0
2 𝑍𝜑2 − 𝜆0

4! 𝑍2𝜑4 (4.13)

= 1
2(𝜕𝜇𝜑)2 −

𝑚2
𝑅

2 𝜑2 − 𝜆𝑅

4! 𝜑4

+ 1
2𝛿𝑍(𝜕𝜇𝜑)2 − 1

2
(︀
𝑚2

𝑅𝛿𝑍 + 𝛿𝑚2)︀𝜑2 − 1
4! (2𝜆𝑅 𝛿𝑍 + 𝛿𝜆) 𝜑4 .

(4.14)

Since the counterterms are of order 𝜆0 = 𝜆𝑅 + 𝒪(𝜆2) or higher, all terms in the second
line of Eq. (4.14) can be treated perturbatively, assuming that the coupling constant 𝜆𝑅 is
small. Diagrammatically, they are given as a counterterm propagator and a counterterm
vertex, respectively, which give rise to the Feynman rules

= 𝑖(𝑝2𝛿𝑍 − 𝑚2
𝑅𝛿𝑍 − 𝛿𝑚2) , (4.15)

= −𝑖(2𝜆𝑅 𝛿𝑍 + 𝛿𝜆) . (4.16)

The 1PI function Σ̂(𝑝2) of the scalar propagator in the renormalized theory not only
contains loop diagrams but also counterterms and is given by

𝑖Σ̂(𝑝2) = + + 𝒪(𝜆2)
= 𝑖Σ(𝑝2) + 𝑖𝛿𝑍

(︀
𝑝2 − 𝑚2

𝑅

)︀
− 𝑖𝛿𝑚2 + 𝒪(𝜆2) .

(4.17)

By the analog derivation, the full propagator of the renormalized theory has the same form
as the full propagator of the bare theory in Eq. (4.7), but with 𝑚0 replaced by 𝑚𝑅 and Σ(𝑝2)
replaced by Σ̂(𝑝2),

𝐺̂(𝑝2) = 𝑖

𝑝2 − 𝑚2
𝑅 + Σ̂(𝑝2)

. (4.18)

Plugging in Eq. (4.17) on finds for the denominator of 𝐺̂(𝑝2)

−𝑖𝐺̂−1(𝑝2) = 𝑍
(︀
𝑝2 − 𝑚2

𝑅

)︀
+ Σ(𝑝2) − 𝛿𝑚 + 𝒪(𝜆2)

= 𝑍
(︀
𝑝2 − 𝑚2

0 + Σ(𝑝2)
)︀

+ 𝒪(𝜆2)
= −𝑖𝑍𝐺−1(𝑝2) + 𝒪(𝜆2) ,

(4.19)

where Eq. (4.12) was used. Hence, the factor 𝑍 in the Källén–Lehmann spectral decomposi-



24 Chapter 4 Renormalization of the DCxSM

tion (4.8) drops out in the equivalent condition for the renormalized full propagator 𝐺̂(𝑝2)
[34], for which holds

−𝑖𝐺̂(𝑝2) → 1
𝑝2 − 𝑚2 for 𝑝2 → 𝑚2 . (4.20)

For the propagator 𝐺̂(𝑝2) in Eq. (4.18) to comply with Eq. (4.20), the renormalization
conditions

Re Σ̂(𝑚2) = 𝑚2
𝑅 − 𝑚2 , Re 𝜕Σ̂(𝑝2)

𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=𝑚2

= 0 . (4.21)

need to be employed [35]. The real parts in these equations are required for the case where
the energy threshold for the loop particles going on-shell has been exceeded, since Σ(𝑝2) and
hence also Σ̂(𝑝2) will then acquire an imaginary part [34].

As stated before, the renormalization scheme determines the finite parts of the counterterms.
For example, in the minimal subtraction (MS) renormalization scheme the counterterms are
chosen in such a way that they contain exactly the infinite terms that cancel the infinites of
Σ(𝑝2) in Eq. (4.17) but do not contain any finite parts. In this case, the first renormalization
condition in Eq. (4.21) is required to relate the renormalized mass 𝑚𝑅 to the physical mass
𝑚 [35]. In the on-shell renormalization scheme, the renormalized mass 𝑚𝑅 is identified with
the physical mass 𝑚, i. e. 𝑚𝑅 = 𝑚, such that the renormalization conditions (4.21) fix the
counterterms using Eq. (4.17) as follows [35],

𝛿𝑚2 = Re Σ(𝑚2) + 𝒪(𝜆2) , 𝛿𝑍 = −Re 𝜕Σ(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

+ 𝒪(𝜆2) , (4.22)

assuming the counterterms have no imaginary part. Also in the on-shell renormalization
scheme, the infinite parts of the counterterms cancel the infinities of the loop diagram in
Eq. (4.17) and thereby rendering Σ̂(𝑝2) finite. All subsequent derivations in this work will be
performed in the on-shell renormalization scheme.

For Direct Detection in the DCxSM, the following parameters need to be renormalized,

Higgs masses: 𝑚2
𝑖0 = 𝑚2

𝑖 + 𝛿𝑚2
𝑖 , see Sec. 4.2–4.3 ,

Tadpoles: 𝑇H0 = 𝑇H + 𝛿𝑇H , see Sec. 4.3 ,

𝑇S0 = 𝑇S + 𝛿𝑇S , see Sec. 4.3 ,

Higgs mixing angle: 𝛼0 = 𝛼 + 𝛿𝛼 , see Sec. 4.4 ,

DM mass: 𝑚2
𝜒0 = 𝑚2

𝜒 + 𝛿𝑚2
𝜒 , see Sec. 4.5 ,

Quark mass: 𝑚𝑞0 = 𝑚𝑞 + 𝛿𝑚𝑞 , see Sec. 4.7 ,

𝑊 boson mass: 𝑚2
𝑊 0 = 𝑚2

𝑊 + 𝛿𝑚2
𝑊 , see Sec. 4.8 ,

𝑍 boson mass: 𝑚2
𝑍0 = 𝑚2

𝑍 + 𝛿𝑚2
𝑍 , see Sec. 4.8 ,

Weak coupling: 𝑔0 = 𝑔 + 𝛿𝑔 , see Sec. 4.8 ,

Elementary charge: 𝑒0 = 𝑒 − 𝛿𝑍𝑒𝑒/2 , see Sec. 4.8 .
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Moreover, the following fields have to be renormalized,

Higgs boson: ℎ𝑖0 =
(︂

𝛿𝑖𝑗 + 1
2𝛿𝑍𝑖𝑗

)︂
ℎ𝑗 , see Sec. 4.2 , 4.3 ,

DM particle: 𝜒0 =
(︂

1 + 1
2𝛿𝑍𝜒

)︂
𝜒 , see Sec. 4.5 ,

Quarks: 𝑞𝑅,𝐿 =
(︂

1 + 1
2𝛿𝑍𝑅,𝐿

)︂
𝑞𝑅,𝐿 , see Sec. 4.7 ,

Gauge bosons: 𝑉 𝜇
𝑎 =

(︂
1 + 1

2𝛿𝑍𝑎𝑏

)︂
𝑉 𝜇

𝑏 , see Sec. 4.8 .

Here, 𝑖, 𝑗 = 1, 2 is the index of the Higgs bosons, 𝑅 and 𝐿 mark right- and left-handed fermion
fields and 𝑎, 𝑏 indicate the mass eigenstates of the gauge fields.

4.2 Higgs Self-Energy
It is known from Chapter 2 that the DCxSM contains two types of Higgs particles, whose
mass-eigenstates are described by the bare fields ℎ10 and ℎ20. They arise from a mixing
of the gauge eigenstates that are described by the bare fields 𝜑H0 and 𝜑S0 as described in
Eq. (2.13).1 The renormalization of those fields is more subtle than the renormalization
procedure for a single scalar field that was presented in Sec. 4.1. This is due to the fact that
an ℎ10 particle can be turned into an ℎ20 particle only by “self-interaction” (and vice versa).
In other words, the diagrams

𝑖Σ12(𝑝2) ≡ ℎ10 1PI ℎ20 and 𝑖Σ21(𝑝2) ≡ ℎ20 1PI ℎ10 (4.23)

exist and are non-vanishing. Consequently, the field-strength renormalization constant 𝑍 as
well as its counterterm 𝛿𝑍 are promoted to 2 × 2 matrices that link the bare fields ℎ10 and
ℎ20 with the renormalized fields ℎ1 and ℎ2 as follows,(︂

ℎ10
ℎ20

)︂
=

√
𝑍

(︂
ℎ1
ℎ2

)︂
≈
(︂

1 + 1
2𝛿𝑍

)︂(︂
ℎ1
ℎ2

)︂
. (4.24)

In analogy to Eq. (4.19), the inverse of the renormalized propagator 𝐺̂(𝑝2) is given by2

𝑖𝐺̂−1(𝑝2) =
√

𝑍
� (︀

𝑝2 − 𝑀2
0 + Σ(𝑝2)

)︀√
𝑍

= 𝑝2 − 𝑀2 + Σ̂(𝑝2) .
(4.25)

Here, 𝑀2 is the diagonal mass matrix that has been introduced in Eq. (2.13) and 𝑀2
0 is the

1 All fields and parameters in Chapter 2 are bare. Since distinguishing between bare and renormalized fields
and parameters is critical solely in the current chapter, only now bare quantities are labeled explicitly by
an index 0.

2 For the moment, let us neglect the matrix 𝒯 from Eq. (2.11), such that 𝑀2
0 and 𝑀2 rather than 𝑀2

𝑇 0 and
𝑀2

𝑇 are actually the diagonal mass matrices for the fields ℎ1 and ℎ2. Sec. 4.3 will be dedicated to handle
the matrix 𝒯 .
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corresponding bare mass matrix with the bare masses 𝑚2
10 and 𝑚2

20 as diagonal elements.
Evidently, also the propagator as well as Σ(𝑝2) and Σ̂(𝑝2) are matrices. Due to the symmetry
of the diagrams in Eq. (4.23), these matrices are symmetric, i.e.

Σ12(𝑝2) = Σ21(𝑝2) . (4.26)

Expanding 𝑀2
0 and 𝑍 in the first line of Eq. (4.25) in terms of their counterterms and

comparing this expansion with its second line leads to

Σ̂(𝑝2) ≈ Σ(𝑝2) − 𝛿𝑀2 + 1
2𝛿𝑍�

(︀
𝑝2 − 𝑀2)︀+ 1

2
(︀
𝑝2 − 𝑀2)︀ 𝛿𝑍 . (4.27)

Here, 𝛿𝑀2 is a diagonal matrix whose diagonal elements are the mass counterterms 𝛿𝑚2
1 and

𝛿𝑚2
2, respectively, such that

𝑀2
0 = 𝑀2 + 𝛿𝑀2 . (4.28)

In the 𝜑4 theory of Sec. 4.1, the renormalization conditions of Eq. (4.21) where chosen
in such a way that the physical mass was the real part of the pole of the renormalized
full propagator 𝐺̂(𝑝2) and the residue of −𝑖𝐺̂(𝑝2) was 1. Similarly, the diagonal elements
of −𝑖 times the Higgs doublet propagator 𝐺̂(𝑝2) should also have poles with residue 1 at
the physical masses 𝑚2

1 and 𝑚2
2, respectively, in order to comply with the Källén–Lehmann

spectral decomposition. For the off-diagonal elements, a new condition is imposed that
simply requires them to vanish for both 𝑝2 → 𝑚2

1 and 𝑝2 → 𝑚2
2. Explicitly, the renormalized

propagator should obey [55]

−Re 𝑖𝐺̂(𝑝2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︃
(𝑝2 − 𝑚2

1)−1 0
0 𝐶1

)︃
, for 𝑝2 → 𝑚2

1 ,(︃
𝐶2 0
0 (𝑝2 − 𝑚2

2)−1

)︃
, for 𝑝2 → 𝑚2

2 ,

(4.29)

where 𝐶𝑖 is some non-zero constant. For the inverse propagator, this implies

Re 𝑖𝐺̂−1(𝑝2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︃
𝑝2 − 𝑚2

1 0
0 𝐶−1

1

)︃
, for 𝑝2 → 𝑚2

1 ,(︃
𝐶−1

2 0
0 𝑝2 − 𝑚2

2

)︃
, for 𝑝2 → 𝑚2

2 .

(4.30)

In order to impose this behavior on the renormalized propagator, it is sufficient to employ
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the following renormalization conditions:

Re 𝑖𝐺̂−1
𝑖𝑗 (𝑝2)

⃒⃒⃒
𝑝2→𝑚2

𝑘

= Re Σ̂𝑖𝑗(𝑚2
𝑘) != 0 , for 𝑖 ̸= 𝑗 , (4.31)

Re 𝑖𝐺̂−1
𝑖𝑖 (𝑝2)

⃒⃒⃒
𝑝2→𝑚2

𝑖

≈ Re Σ̂𝑖𝑖(𝑚2
𝑖 ) +

⎛⎝1 + Re 𝜕Σ̂𝑖𝑖(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=𝑚2

𝑖

⎞⎠ (𝑝2 − 𝑚2
𝑖 ) != 𝑝2 − 𝑚2

𝑖 .

(4.32)

Here, Eq. (4.25) was used; in Eq. (4.32) a Taylor expansion at 𝑝2 = 𝑚2
𝑖 was applied. It is

straightforward to translate the renormalization conditions on the inverse propagator (4.31)
and (4.32) to conditions on the renormalized 1PI function 𝑖Σ̂(𝑝2). Explicitly, it is required
that

Re Σ̂11(𝑚2
1) != 0 , Re Σ̂12(𝑚2

1) != 0 , Re Σ̂21(𝑚2
1) != 0 , (4.33)

Re Σ̂22(𝑚2
2) != 0 , Re Σ̂12(𝑚2

2) != 0 , Re Σ̂21(𝑚2
2) != 0 , (4.34)

Re 𝜕Σ̂11(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=𝑚2

1

!= 0 , Re 𝜕Σ̂22(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=𝑚2

2

!= 0 . (4.35)

These conditions can now be employed to fix the counterterms 𝛿𝑀2 and 𝛿𝑍. For this
purpose, consider the explicit form of the matrix Σ̂(𝑝2). Assuming 𝑍 is a real matrix3 it is
found from Eq. (4.27) that

Σ̂(𝑝2) = Σ(𝑝2) − 𝛿𝑀2 (4.36)

+ 1
2

(︂
2(𝑝2 − 𝑚2

1)𝛿𝑍11 (𝑝2 − 𝑚2
2)𝛿𝑍21 + (𝑝2 − 𝑚2

1)𝛿𝑍12
(𝑝2 − 𝑚2

1)𝛿𝑍12 + (𝑝2 − 𝑚2
2)𝛿𝑍21 2(𝑝2 − 𝑚2

2)𝛿𝑍22

)︂
.

Hence, the conditions (4.33)–(4.35) imply

𝛿𝑀2
11 = Re Σ11(𝑚2

1) , 𝛿𝑀2
22 = Re Σ22(𝑚2

2) ,

𝛿𝑍12 = 2
𝑚2

2 − 𝑚2
1

Re
(︀
𝛿𝑀2

21 − Σ21(𝑚2
2)
)︀

, 𝛿𝑍21 = 2
𝑚2

1 − 𝑚2
2

Re
(︀
𝛿𝑀2

12 − Σ12(𝑚2
1)
)︀

,

𝛿𝑍11 = −Re 𝜕Σ11(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

1

, 𝛿𝑍22 = −Re 𝜕Σ22(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

2

. (4.37)

Here, these conditions have been given for a general matrix 𝛿𝑀2 – despite the fact that 𝛿𝑀2

is a diagonal matrix diag(𝛿𝑚2
1 , 𝛿𝑚2

2) – as the general formulas will be useful in Sec. 4.3.

4.3 Tadpole Renormalization
The tadpole parameters 𝑇H and 𝑇S have been defined as the value of the potential at the
points where the fields 𝐻 and 𝑆 equal the parameters 𝑣 and 𝑣S, cf. Eqs. (2.3) and (2.4).Setting

3 At NLO, this assumption is sufficient [56].
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𝑇H = 𝑇S = 0 makes 𝑣 and 𝑣S the minimum of the potential and thereby the VEVs of the
fields 𝐻 and 𝑆, respectively.

While simply setting 𝑇H = 𝑇S = 0 works perfectly fine at tree level, the situation is more
complicated when taking higher-order corrections into account. Upon renormalization, the
(bare) parameters 𝜇2

H0, 𝜇2
S0, 𝜆H0, 𝜆S0, 𝜆HS0 and 𝑚2

𝜒0 that appear in the definition of the
tadpole parameters (2.4) are split into physical parameters and corresponding counterterms,
that is

𝑝0 = 𝑝 + 𝛿𝑝 , (4.38)

where 𝑝 denotes any parameter of the Lagrangian. Consequently, also the tadpole parameters
are expanded in the same way:

𝑇H0 = 𝑇H + 𝛿𝑇H , 𝑇S0 = 𝑇S + 𝛿𝑇S . (4.39)

At NLO, simply setting all these tadpole parameters to zero comes with severe consequences.
In order to understand these consequences, consider the tadpole terms 𝑉1 in the Lagrangian,
that are given in Eq. (2.7). In this work all computations are done in the mass basis defined
by Eq. (2.13) and it is therefore convenient to define(︂

𝑇10
𝑇20

)︂
≡ 𝑅(𝛼0)

(︂
𝑇H0
𝑇S0

)︂
, (4.40)

such that the tadpole terms can be translated into the mass basis as follows:

L ⊃ −𝑉1 = − (𝑇H0, 𝑇S0)
(︂

𝜑H0
𝜑S0

)︂
= − (𝑇10, 𝑇20)

(︂
ℎ10
ℎ20

)︂
= −𝑇𝑖0ℎ𝑖0 . (4.41)

These tadpole terms correspond to “vertices” with a single external line ℎ𝑖0 that come with
factors of −𝑖𝑇𝑖0. These vertices receive higher-order corrections in form of a 1PI function
that we are going to call 𝑖Ξ𝑖. It is the analog to 𝑖Σ(𝑝2) of the propagator in Eq. (4.6). Note
that Ξ𝑖 is momentum independent since the external momentum of a tadpole diagram has to
vanish due to momentum conservation at the vertices.4 The full tadpole (in analogy to the
full propagator 𝐺(𝑝2)) is then given by

𝐾𝑖 ≡ −𝑖𝑇𝑖0 + 𝑖Ξ𝑖 = ℎ𝑖0 + ℎ𝑖0 1PI . (4.42)

Now, a renormalized full tadpole 𝐾̂𝑖 is introduced together with a renormalized tadpole
1PI function 𝑖Ξ̂ in analogy to the renormalized propagator 1PI function 𝑖Σ̂(𝑝2) in Eq. (4.19):

𝐾̂𝑖 = −𝑖𝑇𝑖 + 𝑖Ξ̂𝑖 ≡
√

𝑍𝑖𝑗 (−𝑖𝑇𝑗0 + 𝑖Ξ𝑗) =
√

𝑍𝑖𝑗𝐾𝑗 . (4.43)

Plugging the expansion in counterterms 𝑇𝑖0 = 𝑇𝑖 + 𝛿𝑇𝑖 and Eq. (4.24) into the right-hand

4 In this sense, it is not really a “function”. For the sake of uniformity, we will still call it “1PI function”,
just like Σ(𝑝2).
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side of Eq. (4.43), one finds

Ξ̂𝑖 = Ξ𝑖 − 𝛿𝑇𝑖 − 1
2𝛿𝑍𝑖𝑗𝑇𝑗 + 𝒪(𝛿2) , (4.44)

where 𝒪(𝛿2) stands for terms of order two (or higher) in the counterterms. This is the analog
to Eq. (4.17).

Note that 𝐾̂𝑖 corresponds to a 1-point function [35],

𝐾̂𝑖 = FT ⟨Ω|𝒯 ℎ𝑖(𝑥)|Ω⟩ = FT ⟨Ω|ℎ𝑖(𝑥)|Ω⟩ = FT ⟨ℎ𝑖⟩

= FT
{︃

cos 𝛼 ⟨𝜑H⟩ + sin 𝛼 ⟨𝜑S⟩ , for 𝑖 = 1 ,

− sin 𝛼 ⟨𝜑H⟩ + cos 𝛼 ⟨𝜑S⟩ , for 𝑖 = 2 ,

(4.45)

where Ω is the interacting vacuum, 𝒯 is the time-ordering operator and “FT” is a short-hand
notation for a Fourier transformation. Obviously, 𝐾̂𝑖 is precisely the vacuum expectation
value of the field ℎ𝑖. Even if 𝑇𝑖 = 0, the full tadpole 𝐾̂𝑖 can still be non-zero due to the
contributions from the tadpole 1PI function 𝑖Ξ̂𝑖. Due to Eq. (4.45), this would imply that
also ⟨𝜑H⟩ and ⟨𝜑S⟩ do not vanish and hence the vacuum expectation values of the fields 𝐻
and 𝑆 are no longer 𝑣 and 𝑣S, respectively, but 𝑣 + ⟨𝜑H⟩ and 𝑣S + ⟨𝜑S⟩, according to Eq. (2.5).

Thus, in order to ensure that 𝑣 and 𝑣S are the true vacuum expectation values of the fields
𝐻 and 𝑆, respectively, it is required that ⟨𝜑H⟩ and ⟨𝜑S⟩ vanish and hence that

𝐾̂𝑖
!= 0 . (4.46)

Additionally, 𝑣 and 𝑣S are by definition only the true VEVs if they are the minima of the
potential, which implies by Eq. (2.4) that the physical tadpole parameters 𝑇H and 𝑇S must
vanish. Due to Eq. (4.39) the bare tadpole parameters must then equal their counterterms:5

𝑇H = 0 , 𝑇S = 0 =⇒ 𝑇H0 = 𝛿𝑇H , 𝑇S0 = 𝛿𝑇S . (4.47)

Note that setting the physical tadpole parameters to zero ensures that the physical parameters
𝑚2

1,2 as defined by Eqs. (2.14) are the true tree-level masses of the Higgs bosons ℎ1,2 .
Using Eq. (4.40) one can easily translate Eq. (4.47) into the mass basis,

𝑇1 = 0 , 𝑇2 = 0 ,

(︂
𝛿𝑇1
𝛿𝑇2

)︂
= 𝑅(𝛼)

(︂
𝛿𝑇H
𝛿𝑇S

)︂
+ 𝒪(𝛿2) . (4.48)

Using Eq. (4.43) and Eq. (4.44), the observations that 𝐾̂𝑖 and 𝑇𝑖 must vanish lead to the
conclusion

Ξ̂𝑖
!= 0 =⇒ 𝛿𝑇𝑖 = Ξ𝑖 . (4.49)

5 Since counterterms are of higher order in perturbation theory, these equations imply that the bare tadpole
parameters 𝑇H0 and 𝑇S0 are of higher order as well, which is why it is still consistent to set them to zero
at leading order.
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In the renormalized Lagrangian, the tadpole terms (4.41) read

L ⊃ −𝑉1 = −𝑇𝑖ℎ𝑖 − 𝛿𝑇𝑖ℎ𝑖 . (4.50)

Thus, the renormalized Lagrangian includes a tadpole counterterm

−𝑖𝛿𝑇𝑖 = ℎ𝑖 . (4.51)

The full renormalized tadpole can then be visualized diagrammatically as

𝐾̂𝑖 = ℎ𝑖 + ℎ𝑖 1PI + ℎ𝑖

= −𝑖𝑇𝑖 + 𝑖Ξ𝑖 − 𝑖𝛿𝑇𝑖 + 𝒪(𝛿2)
= 0 .

(4.52)

It vanishes because the renormalized tadpole parameter 𝑇𝑖 is inherently zero and the coun-
terterm 𝛿𝑇𝑖 cancels Ξ𝑖 by construction.6

In this work, the Standard Tadpole Scheme is employed, within which it is not required to
make a distinction between bare and physicals VEVs (in other words, the VEV counterterms
are set to zero). For the Alternative Tadpole Scheme, see [57].

The observation that the bare tadpole parameters 𝑇H0 and 𝑇S0 do not vanish at NLO
entails that the (bare) tadpole matrix 𝒯0 in Eq. (2.11) can no longer be dropped as it was
done in Sec. 4.2. Hence, instead of the “pure” mass matrix ℳ0 we need to use the mass
matrix ℳ2

𝑇 0 = ℳ2
0 + 𝒯0 that includes the tadpoles. Correspondingly, a rotated mass matrix

𝑀2
𝑇 0 = 𝑅(𝛼0) ℳ2

𝑇 0 𝑅−1(𝛼0) = 𝑀2
0 + 𝑅(𝛼0)

(︂
𝑇H0/𝑣 0

0 𝑇S0/𝑣S

)︂
𝑅−1(𝛼0) (4.53)

is introduced. The expansion in physical parameters and counterterms reads

𝑀2
𝑇 0 = 𝑀2 + 𝛿𝑀2

𝑇 + 𝒪(𝛿2) , (4.54)

where 7

𝛿𝑀2
𝑇 = 𝛿𝑀2 + 𝛿𝑇 , 𝛿𝑇 = 𝑅(𝛼)

(︂
𝛿𝑇H/𝑣 0

0 𝛿𝑇S/𝑣S

)︂
𝑅−1(𝛼) . (4.56)

Here, 𝑀2 and 𝛿𝑀2 are diagonal matrices with the Higgs masses and Higgs mass counterterms
as diagonal elements, respectively. Including the tadpole matrix 𝒯 has therefore the effect

6 Note that the difference in writing the tadpole 1PI function 𝑖Ξ𝑖 with an external renormalized field ℎ𝑖 as
in Eq. (4.52) or with an external bare field ℎ𝑖0 as in Eq. (4.42) is an additional factor 𝑍, which contributes
to the terms in 𝒪(𝛿2) only.

7 Here it was used that

𝑓(𝛼0)𝑇H0

𝑣
= 𝑓(𝛼 + 𝛿𝛼)𝛿𝑇H

𝑣
=

(︀
𝑓(𝛼) + 𝑓(𝛼)𝛿𝛼 + 𝒪(𝛿𝛼2)

)︀ 𝛿𝑇H

𝑣
= 𝑓(𝛼)𝛿𝑇H

𝑣
+ 𝒪(𝛿2) , (4.55)

since 𝑇H = 0.
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that instead of 𝑀2
0 and 𝛿𝑀2, the matrices 𝑀2

𝑇 0 and 𝛿𝑀2
𝑇 have to be used in Sec. 4.2.

Performing the matrix multiplication in the definition of 𝛿𝑇 in Eq. (4.56) explicitly and
converting 𝛿𝑇H, 𝛿𝑇S into 𝛿𝑇1, 𝛿𝑇2 using Eq. (4.48), the elements of the matrix 𝛿𝑇 can be
given as

𝛿𝑇11 = 𝑣 sin3 𝛼 + 𝑣S cos3 𝛼

𝑣𝑣S
𝛿𝑇1 + 𝑣 sin 𝛼 − 𝑣S cos 𝛼

𝑣𝑣S
cos 𝛼 sin 𝛼 𝛿𝑇2 ,

𝛿𝑇12 = 𝑣 sin 𝛼 − 𝑣S cos 𝛼

𝑣𝑣S
cos 𝛼 sin 𝛼 𝛿𝑇1 + 𝑣 cos 𝛼 + 𝑣S sin 𝛼

𝑣𝑣S
cos 𝛼 sin 𝛼 𝛿𝑇2 ,

𝛿𝑇21 = 𝛿𝑇12 ,

𝛿𝑇22 = 𝑣 cos 𝛼 + 𝑣S sin 𝛼

𝑣𝑣S
cos 𝛼 sin 𝛼 𝛿𝑇1 + 𝑣 cos3 𝛼 − 𝑣S sin3 𝛼

𝑣𝑣S
𝛿𝑇2 .

(4.57)

With these new insights at hand, the Eqs. (4.37) need to be adjusted; specifically, the
counterterms 𝛿𝑀2

𝑖𝑗 need to be equipped with an index 𝑇 , after which Eq. (4.56) can be
employed to arrive at (see also [56])

𝛿𝑚2
1 = Re

(︀
Σ11(𝑚2

1) − 𝛿𝑇11
)︀

, 𝛿𝑚2
2 = Re (Σ22(𝑚2) − 𝛿𝑇22) , (4.58)

𝛿𝑍12 = 2
𝑚2

2 − 𝑚2
1

Re
(︀
𝛿𝑇21 − Σ21(𝑚2

2)
)︀

, 𝛿𝑍21 = 2
𝑚2

1 − 𝑚2
2

Re
(︀
𝛿𝑇12 − Σ12(𝑚2

1)
)︀

.

The formulas for the counterterms 𝛿𝑍11 and 𝛿𝑍22 from Eq. (4.37) remain valid without
change.

4.4 Mixing Angle Renormalization
The gauge and mass eigenstates of the Higgs doublet are mixed by an angle 𝛼 (see Eq. (2.12)
and (2.13)). By Eq. (2.15) 𝛼 is related directly to parameters like the Higgs masses that are
shifted by higher-order corrections and therefore need to be renormalized. Consequently, also
𝛼 will receive a shift during renormalization: One has to distinguish between the bare mixing
angle 𝛼0 and the physical mixing angle 𝛼, which differ by a counterterm 𝛿𝛼,

𝛼0 = 𝛼 + 𝛿𝛼 . (4.59)

There are different schemes for how to fix the counterterm 𝛿𝛼. In this work, the Kanemura
scheme (also named KOSY scheme in [58]) will be employed [59]. For other schemes see [60].

Let
√︀

𝑍𝜑 be the field-strength renormalization matrix of the gauge eigenstate Higgs doublet,(︂
𝜑H0
𝜑S0

)︂
=
√︀

𝑍𝜑

(︂
𝜑H
𝜑S

)︂
. (4.60)

It follows from Eq. (4.24) as well as from the bare and renormalized versions of Eq. (2.13)
that

√
𝑍𝑅(𝛼)

(︂
𝜑H
𝜑S

)︂
=

√
𝑍

(︂
ℎ1
ℎ2

)︂
=
(︂

ℎ10
ℎ20

)︂
= 𝑅(𝛼0)

(︂
𝜑H0
𝜑S0

)︂
= 𝑅(𝛼0)

√︀
𝑍𝜑

(︂
𝜑H
𝜑S

)︂
. (4.61)
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Thus, the field-strength renormalization matrices of the mass and gauge eigenstate Higgs
doublet can be related by

√
𝑍 = 𝑅(𝛼0)

√︀
𝑍𝜑 𝑅−1(𝛼) . (4.62)

By expanding the field-strength renormalization matrices in terms of their counterterms
Eq. (4.62) can be brought into the form

1 + 1
2𝛿𝑍 = 𝑅(𝛼0) 𝑅−1(𝛼) + 1

2𝑅(𝛼0) 𝛿𝑍𝜑 𝑅−1(𝛼) + 𝒪(𝛿2)

⇐⇒ 1
2𝑅(𝛼0) 𝛿𝑍𝜑 𝑅−1(𝛼) = 1 + 1

2𝛿𝑍 − 𝑅(𝛿𝛼) + 𝒪(𝛿2) ,
(4.63)

where it was used that 𝑅(𝛼0)𝑅−1(𝛼) = 𝑅(𝛿𝛼) + 𝒪(𝛿𝛼2).8 𝒪(𝛿2) stands for terms that are of
second order in the counterterms. Thus, using 𝑅(𝛼) = 𝑅(𝛼0) + 𝒪(𝛿𝛼) and the result (4.63),
the rotation of

√︀
𝑍𝜑 can be given as

𝑅(𝛼)
√︀

𝑍𝜑 𝑅−1(𝛼) = 1 + 1
2𝑅(𝛼) 𝛿𝑍𝜑 𝑅−1(𝛼) + 𝒪(𝛿2)

= 1 + 1
2𝑅(𝛼0) 𝛿𝑍𝜑 𝑅−1(𝛼) + 𝒪(𝛿2)

= 2 + 1
2𝛿𝑍 − 𝑅(𝛿𝛼) + 𝒪(𝛿2)

=
(︂

2 + 𝛿𝑍11/2 − 1 𝛿𝑍12/2 − 𝛿𝛼
𝛿𝑍21/2 + 𝛿𝛼 2 + 𝛿𝑍22/2 − 1

)︂
+ 𝒪(𝛿2) .

(4.65)

In the KOSY scheme it is assumed that
√︀

𝑍𝜑 is a real symmetric matrix [59]. Under this
assumption, also the rotated version of this matrix is real and symmetric and hence the
off-diagonals of the matrix in Eq. (4.65) need to be equal, which implies [60]

𝛿𝛼 = 1
4 (𝛿𝑍12 − 𝛿𝑍21) + 𝒪(𝛿2) . (4.66)

Plugging in the expression for 𝛿𝑍𝑖𝑗 from Eq. (4.58), the mixing angle counterterm is given by

𝛿𝛼 = 1
2

1
𝑚2

2 − 𝑚2
1

Re
(︀
2𝛿𝑇12 − Σ21(𝑚2

2) − Σ12(𝑚2
1)
)︀

+ 𝒪(𝛿2) . (4.67)

Recall that 𝛿𝑇𝑖𝑗 is given in Eq. (4.57) and the counterterms 𝛿𝑇𝑖 therein are computed directly
from tadpole 1PI diagrams according to Eq. (4.49).

8 This relation follows from

𝑅(𝛿𝛼) 𝑅(𝛼) =
(︂

cos 𝛼 − 𝛿𝛼 sin 𝛼 sin 𝛼 + 𝛿𝛼 cos 𝛼
− sin 𝛼 − 𝛿𝛼 cos 𝛼 cos 𝛼 − 𝛿𝛼 sin 𝛼

)︂
+ 𝒪(𝛿𝛼2) = 𝑅(𝛼 + 𝛿𝛼) + 𝒪(𝛿𝛼2) . (4.64)
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4.5 Renormalization of the Dark Matter Particle
In the Lagrangian, the mass term for the DM candidate 𝜒 in Eq. (2.8) reads9

L ⊃ −1
2

(︂
𝑚2

𝜒0 + 𝑇S0
𝑣S0

)︂
⏟  ⏞  

≡𝑚̃2
𝜒0

𝜒2
0 . (4.68)

Splitting the bare fields and parameters in physical fields and parameters and their countert-
erms, we have

𝜒0 =
(︂

1 + 1
2𝛿𝑍𝜒

)︂
𝜒 , 𝑚̃2

𝜒0 = 𝑚2
𝜒 + 𝛿𝑚2

𝜒 + 𝛿𝑇S
𝑣S

+ 𝒪(𝛿2)⏟  ⏞  
≡𝛿𝑚̃2

𝜒

. (4.69)

With 𝑚̃2
𝜒 ≡ 𝑚2

𝜒, the renormalization of the field 𝜒 corresponds exactly to the renormalization
of 𝜑4 theory in Sec. 4.1 with the mass parameters with a tilde playing the role of the mass
𝑚 in 𝜑4 theory. In the on-shell renormalization scheme (cf. Sec. 4.1), the counterterms are
given by

𝛿𝑚̃2
𝜒 = Σ𝜒(𝑚̃2

𝜒) ⇐⇒ 𝛿𝑚2
𝜒 = Σ𝜒(𝑚2

𝜒) − 𝛿𝑇S
𝑣S

, (4.70)

𝛿𝑍𝜒 = −𝜕Σ𝜒(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚̃2

𝜒

⇐⇒ 𝛿𝑍𝜒 = −𝜕Σ𝜒(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

𝜒

, (4.71)

where 𝑖Σ𝜒(𝑝2) is the sum of 1PI diagrams of the 𝜒 propagator. Note that 𝑇S can be converted
into a linear combination of 𝑇1 and 𝑇2 using Eq. (4.48), which in turn are given in Eq. (4.49).
Since 𝜒 is a stable particle, real parts are not required in these formulas.

4.6 𝜒2–Higgs Vertex Renormalization
The tree-level diagram of the Direct Detection process that is presented in Fig. 4.1a features
the vertex of two DM particles 𝜒 and one Higgs particle ℎ1 or ℎ2. These interactions are
described by the terms ∼ 𝜑H𝜒2 and ∼ 𝜑S𝜒2 in Eq. (2.9). After they have been converted
into the mass basis ℎ1, ℎ2 using Eq. (2.13) and after replacing 𝜆HS and 𝜆S using Eq. (2.16),
they read

L ⊃ 1
2 𝐶10 ℎ10 𝜒2

0 + 1
2 𝐶20 ℎ20 𝜒2

0 , (4.72)

where

𝐶10 = −𝑚2
10 sin 𝛼0

𝑣𝑆0
, 𝐶20 = −𝑚2

20 cos 𝛼0
𝑣𝑆0

. (4.73)

9 Note that the Lagrangian contains the negative potential; so here we have a different sign than in Eq. (2.8).
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Writing the bare vertex factors as a sum of the physical coupling and its counterterm,

𝐶𝑖0 = 𝐶𝑖 + 𝛿𝐶𝑖 , (4.74)

and using that 𝑣S0 = 𝑣S (see Sec. 4.3), the counterterms can be expressed as

𝛿𝐶1 = −sin 𝛼 𝛿𝑚2
1 + 𝑚2

1 cos 𝛼 𝛿𝛼

𝑣S
, 𝛿𝐶2 = −cos 𝛼 𝛿𝑚2

2 − 𝑚2
2 sin 𝛼 𝛿𝛼

𝑣S
. (4.75)

The bare coupling terms in Eq. (4.72) can be turned into renormalized coupling terms as

1
2𝐶𝑖0ℎ𝑖0𝜒2

0 = 1
2𝐶𝑖ℎ𝑖𝜒

2 , (4.76)

where plugging in the Eqs. (4.24), (4.69) and (4.74) leads to

𝐶𝑖 = 𝐶𝑖 + 𝛿𝐶𝑖 + 𝐶𝑖𝛿𝑍𝜒 + 1
2𝐶𝑗𝛿𝑍𝑗𝑖⏟  ⏞  

≡ 𝛿𝐶mix
𝑖

+ 𝒪(𝛿2) . (4.77)

Recall that 𝑍𝑖𝑗 is the field-strength renormalization matrix of the Higgs fields ℎ𝑖.

4.7 Renormalization of Fermions
The fermionic kinetic and mass terms in the Lagrangian after symmetry breaking read10

L ⊃ 𝑞𝑅
0 /𝜕𝑞𝑅

0 + 𝑞𝐿
0 /𝜕𝑞𝐿

0 − 𝑚0
(︀
𝑞𝑅

0 𝑞𝐿
0 + 𝑞𝐿

0 𝑞𝑅
0
)︀

. (4.78)

Here, 𝑞 is the fermion spinor field and the indices 𝑅 and 𝐿 indicate the right- and left-handed
component, respectively. They are defined using a projector 𝑃𝑅,𝐿,

𝑞𝑅,𝐿 ≡ 𝑃𝑅,𝐿 𝑞 , where 𝑃𝑅,𝐿 ≡ 1 ± 𝛾5

2 . (4.79)

The bare fields can be related to the physical fields by

𝑞𝑅
0 =

√
𝑍𝑅𝑞𝑅 , 𝑞𝐿

0 =
√

𝑍𝐿𝑞𝐿 . (4.80)

Note that CKM mixing is neglected in this work. Therefore, each left- and right-handed
fermion has its individual field-strength renormalization constant 𝑍𝑅 and 𝑍𝐿, respectively,
and there is no need for a field-strength renormalization matrix with off-diagonal elements.

Using the identities (4.79) and (4.80), the terms in the Lagrangian (4.78) can be brought
into the following form,

L ⊃ 𝑞
(︀
𝑍𝑅 /𝜕𝑃𝑅 + 𝑍𝐿 /𝜕𝑃𝐿

)︀
𝑞 −

√
𝑍𝑅𝑍𝐿𝑚0

(︀
𝑞𝑅𝑞𝐿 + 𝑞𝐿𝑞𝑅

)︀
. (4.81)

10 Of course, the full Lagrangian contains terms 𝑞𝑅
0 /𝐷𝑞𝑅

0 + 𝑞𝐿
0 /𝐷𝑞𝐿

0 with a covariant derivative. Here, only the
kinetic part of the covariant derivative 𝐷 = 𝜕 + · · · is considered.
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The field-strength renormalization constants then also appear in the fermion propagator
that corresponds to this Lagrangian, just as it was encountered for 𝜑4 in Eq. (4.19). The full
renormalized fermion propagator therefore reads

𝐺̂(𝑝) = 𝑖

𝑍𝑅/𝑝𝑃𝑅 + 𝑍𝐿/𝑝𝑃𝐿 −
√

𝑍𝑅𝑍𝐿𝑚0 + (Σ(𝑝) + 𝒪(𝛿2))
, (4.82)

where 𝑖Σ(𝑝) is the sum of all 1PI diagrams of the fermion propagator defined analogously
to Eq. (4.6).11 Because any four-momentum 𝑝 within Σ(𝑝) can only be contracted to either
another 𝑝 forming 𝑝2 or to a 𝛾 matrix forming /𝑝, it is always possible to decompose Σ(𝑝) into

Σ(𝑝) = /𝑝𝐴(𝑝2) + 𝐵(𝑝2) (4.83)

by using /𝑝2 = 𝑝2. Splitting it also into right- and left-handed parts, Σ(𝑝) can generally be
given as [61]:

Σ(𝑝) = /𝑝𝑃𝑅Σ𝑅(𝑝2) + /𝑝𝑃𝐿Σ𝐿(𝑝2) + 𝑚𝑃𝑅Σ𝑟(𝑝2) + 𝑚𝑃𝐿Σ𝑙(𝑝2) . (4.84)

In CP conserving theories it turns out that Σ𝑟(𝑝2) = Σ𝑙(𝑝2) ≡ Σ𝑆(𝑝2) [61], and hence the
simpler decomposition

Σ(𝑝) = /𝑝𝑃𝑅Σ𝑅(𝑝2) + /𝑝𝑃𝐿Σ𝐿(𝑝2) + 𝑚Σ𝑆(𝑝2) (4.85)

is sufficient.
Plugging this decomposition as well as 𝑚0 = 𝑚 + 𝛿𝑚 into Eq. (4.82), the denominator of

the propagator reads

𝑖𝐺̂−1(𝑝) = /𝑝 − 𝑚 + /𝑝𝑃𝑅

(︀
Σ𝑅(𝑝2) + 𝛿𝑍𝑅

)︀
+ /𝑝𝑃𝐿

(︀
Σ𝐿(𝑝2) + 𝛿𝑍𝐿

)︀
− 1

2𝑚
(︀
𝛿𝑍𝑅 + 𝛿𝑍𝐿

)︀
− 𝛿𝑚 + 𝑚Σ𝑆(𝑝2) + 𝒪(𝛿2) .

(4.86)

Introducing the renormalized 1PI function Σ̂(𝑝) by writing the renormalized propagator as

𝐺̂(𝑝) = 𝑖

/𝑝 − 𝑚 + Σ̂(𝑝)
(4.87)

and decomposing Σ̂(𝑝) in the same way as Σ(𝑝) in Eq. (4.85), one finds (up to NLO) [61]

Σ̂𝑅(𝑝2) = Σ𝑅(𝑝2) + 𝛿𝑍𝑅 ,

Σ̂𝐿(𝑝2) = Σ𝐿(𝑝2) + 𝛿𝑍𝐿 ,

Σ̂𝑆(𝑝2) = Σ𝑆(𝑝2) − 1
2
(︀
𝛿𝑍𝑅 + 𝛿𝑍𝐿

)︀
− 𝛿𝑚

𝑚
.

(4.88)

11 Note that Σ(𝑝) receives overall factors of the field-strength renormalization when computed in the
renormalized theory. However, since Σ(𝑝) is already of NLO, these additional 𝑍-factors have no effect at
NLO: Σ(𝑝) → (𝑍 factors) · Σ(𝑝) = Σ(𝑝) + 𝒪(𝛿2), where 𝒪(𝛿2) stands for next-to-next-to-leading-order
(NNLO) contributions.
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The on-shell renormalization conditions for the full inverse renormalized fermion propagator
𝐺̂−1(𝑝) read [61]12

Re
(︁

𝑖𝐺̂−1(𝑝)
)︁

𝑢(𝑝)
⃒⃒⃒
𝑝2=𝑚2

!= 0 , (4.90)

/𝑝 + 𝑚

𝑝2 − 𝑚2 Re
(︁

𝑖𝐺̂−1(𝑝)
)︁

𝑢(𝑝)
⃒⃒⃒⃒
𝑝2→𝑚2

!= 𝑢(𝑝) . (4.91)

Plugging in the propagator in terms of the renormalized 1PI function Σ̂(𝑝) decomposed as
in Eq. (4.85), the first renormalization condition (4.90) yields, exploiting the Dirac equation,

Re
(︁

𝑃𝐿

(︁
𝑚Σ̂𝑅(𝑝2) + 𝑚Σ̂𝑆(𝑝2)

)︁
+ 𝑃𝑅

(︁
𝑚Σ̂𝐿(𝑝2) + 𝑚Σ̂𝑆(𝑝2)

)︁)︁
𝑢(𝑝)

⃒⃒⃒
𝑝2=𝑚2

!= 0

=⇒ Re
(︁

Σ̂𝑅(𝑚2) + Σ̂𝑆(𝑚2)
)︁

!= 0 , Re
(︁

Σ̂𝐿(𝑚2) + Σ̂𝑆(𝑚2)
)︁

!= 0 . (4.92)

The second renormalization condition (4.91) yields

1
𝑝2 − 𝑚2 Re

(︁
𝑝2 − 𝑚2 + 𝑃𝑅

(︁
𝑝2Σ̂𝑅(𝑝2) + 𝑚2Σ̂𝐿(𝑝2) + 2𝑚2Σ̂𝑆(𝑝2)

)︁
+ 𝑃𝐿

(︁
𝑝2Σ̂𝐿(𝑝2) + 𝑚2Σ̂𝑅(𝑝2) + 2𝑚2Σ̂𝑆(𝑝2)

)︁)︁
𝑢(𝑝)

⃒⃒⃒
𝑝2→𝑚2

!= 𝑢(𝑝) ,
(4.93)

where the Dirac equation was used again.
In order to satisfy this equation, the first and second orders of the Taylor expansions

around 𝑝2 ≈ 𝑚2 of the two brackets after 𝑃𝑅 and 𝑃𝐿, respectively, have to vanish. The first
order already vanishes by the conditions (4.92). The second order vanishes if

Re 𝜕

𝜕𝑝2

(︁
𝑝2Σ̂𝑅(𝑝2) + 𝑚2Σ̂𝐿(𝑝2) + 2𝑚2Σ̂𝑆(𝑝2)

)︁⃒⃒⃒⃒
𝑝2=𝑚2

!= 0 ,

Re 𝜕

𝜕𝑝2

(︁
𝑝2Σ̂𝐿(𝑝2) + 𝑚2Σ̂𝑅(𝑝2) + 2𝑚2Σ̂𝑆(𝑝2)

)︁⃒⃒⃒⃒
𝑝2=𝑚2

!= 0 .

(4.94)

12 In QED, it follows from the Källén–Lehmann spectral decomposition that

𝐺̂(/𝑝) != 𝑖
/𝑝 + 𝑚

/𝑝2 − 𝑚2 =
(︀
−𝑖

(︀
/𝑝 − 𝑚

)︀)︀−1 for /𝑝 → 𝑚 , (4.89)

similar to Eq. (4.8) [34]. The fact that 𝐺̂(/𝑝) has a pole at /𝑝 → 𝑚 implies 𝐺̂−1(/𝑝) = 0 for /𝑝 → 𝑚 or,
equivalently, Eq. (4.90). The form of the pole of the propagator (that is, its residue) implies 𝐺̂−1(/𝑝) =
−𝑖(/𝑝 − 𝑚) ⇐⇒ (/𝑝 + 𝑚)/(/𝑝2 − 𝑚2) 𝑖𝐺̂−1(/𝑝) = 1 for /𝑝 → 𝑚 or, equivalently, Eq. (4.91). The appearance of
the real parts is discussed above Eq. (4.22).
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Plugging in the relations (4.88), the conditions (4.92) and (4.94) can be transformed to

Re
(︂(︂

Σ𝑅(𝑚2) + 𝛿𝑍𝑅

Σ𝐿(𝑚2) + 𝛿𝑍𝐿

)︂
+ Σ𝑆(𝑚2) − 1

2(𝛿𝑍𝑅 + 𝛿𝑍𝐿) − 𝛿𝑚

𝑚

)︂
!= 0 ,

Re
(︃(︂

Σ𝑅(𝑚2) + 𝛿𝑍𝑅

Σ𝐿(𝑚2) + 𝛿𝑍𝐿

)︂
+ 𝑚2 𝜕

𝜕𝑝2
(︀
Σ𝑅(𝑝2) + Σ𝐿(𝑝2) + 2Σ𝑆(𝑝2)

)︀⃒⃒⃒⃒
𝑝2=𝑚2

)︃
!= 0 ,

(4.95)

respectively. These four equations can be solved consistently for the three counterterms [61]:

𝛿𝑚 = 1
2𝑚 Re

(︀
Σ𝑅(𝑚2) + Σ𝐿(𝑚2) + 2Σ𝑆(𝑚2)

)︀
,

𝛿𝑍𝑅 = −Re Σ𝑅(𝑚2) − 𝑚2 Re 𝜕

𝜕𝑝2
(︀
Σ𝑅(𝑝2) + Σ𝐿(𝑝2) + 2Σ𝑆(𝑝2)

)︀⃒⃒⃒⃒
𝑝2=𝑚2

,

𝛿𝑍𝐿 = −Re Σ𝐿(𝑚2) − 𝑚2 Re 𝜕

𝜕𝑝2
(︀
Σ𝐿(𝑝2) + Σ𝑅(𝑝2) + 2Σ𝑆(𝑝2)

)︀⃒⃒⃒⃒
𝑝2=𝑚2

,

(4.96)

where it was used that the counterterms are real.

4.8 Renormalization of the Gauge Sector
The starting point for the derivation of the on-shell counterterms has been the full propagator
𝐺 for both the scalar fields and the fermion fields (see Eqs. (4.7), (4.25) and (4.82)). The
derivation of these full propagators can be found in many QFT textbooks, which is why they
were omitted in this work. On the other hand, textbooks rarely provide a derivation of the
full propagator of massive gauge bosons. In Sec. 4.8.1 this derivation is presented, before the
counterterms of the gauge sector are deduced in Sec. 4.8.2.

4.8.1 The Full Gauge Boson Propagator
In order to derive the full gauge boson propagator, let us first introduce the following notations:
Let Δ𝜇𝜈

𝑇 and Δ𝜇𝜈
𝐿 be the transversal and longitudinal Lorentz structures, respectively, and let

𝑑𝑇 𝑎 and 𝑑𝐿𝑎 be the transversal and longitudinal propagator denominators of a gauge boson 𝑎
with mass 𝑚𝑎. More specifically, these quantities are introduced as13

Δ𝜇𝜈
𝑋 ≡

⎧⎪⎪⎨⎪⎪⎩
𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

𝑝2 , for 𝑋 = 𝑇 ,

𝑝𝜇𝑝𝜈

𝑝2 , for 𝑋 = 𝐿 ,

𝑑𝑋𝑎 ≡

⎧⎪⎪⎨⎪⎪⎩
1

𝑝2 − 𝑚2
𝑎

, for 𝑋 = 𝑇 ,

𝜉

𝑝2 − 𝜉𝑚2
𝑎

, for 𝑋 = 𝑇 ,

(4.97)

where 𝜉 is the gauge parameter of the 𝑅𝜉 gauge. Note that the object Δ𝜇𝜈
𝑋 has the property

Δ𝜇𝜎
𝑋 Δ𝑌,𝜎𝜈 = Δ𝜇

𝑋,𝜈𝛿𝑋𝑌 =
{︃

0 , for 𝑋 ̸= 𝑌 ,

Δ𝜇
𝑋,𝜈 , for 𝑋 = 𝑌 .

(4.98)

13 The full propagator is derived in terms of the bare quantities. We will drop the indices zero in this section
for simplicity. As soon as distinguishing between bare and physical parameters becomes relevant (which
will be the case in Sec. 4.8.2), bare parameters will be equipped with an index 0 again.
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In the 𝑅𝜉 gauge, the kinetic and mass terms in the Lagrangian for the massive gauge
bosons read [34]

L ⊃ −1
2𝒱𝑎

𝜇

(︂
𝛿𝑎𝑏

(︂
−𝑔𝜇𝜈� +

(︂
1 − 1

𝜉

)︂
𝜕𝜇𝜕𝜈

)︂
− 𝑚2

𝑎𝑏𝑔
𝜇𝜈

)︂
𝒱𝑏

𝜈 . (4.99)

𝑚2
𝑎𝑏 is the mass matrix in the gauge basis; diagonalizing it turns the gauge eigenstates 𝒱𝑎

𝜇

into the mass eigenstates 𝑉 𝑎
𝜇 ∈ {𝑊 ±

𝜇 , 𝑍𝜇, 𝐴𝜇} (𝑎 indicates the type of the gauge boson) with
masses 𝑚2

𝑎. Eq. (4.99) then reads

L ⊃ −1
2
∑︁
𝑎, 𝑏

𝑉 𝑎
𝜇

(︂
𝛿𝑎𝑏

(︂
−𝑔𝜇𝜈� +

(︂
1 − 1

𝜉

)︂
𝜕𝜇𝜕𝜈

)︂
− 𝛿𝑎𝑏𝑚

2
𝑎𝑔𝜇𝜈

)︂
𝑉 𝑏

𝜈 . (4.100)

The inverse Feynman propagator 𝐷−1,𝜇𝜈
𝑎𝑏 (𝑝) can be obtained by performing a Fourier

transformation on the large bracket in Eq. (4.100) [34]:

−𝑖𝐷−1,𝜇𝜈
𝑎𝑏 (𝑝) = 𝛿𝑎𝑏

(︂
𝑔𝜇𝜈𝑝2 −

(︂
1 − 1

𝜉

)︂
𝑝𝜇𝑝𝜈

)︂
− 𝛿𝑎𝑏𝑚

2
𝑎𝑔𝜇𝜈

= 𝛿𝑎𝑏

(︂
𝑔𝜇𝜈 − 𝑝𝜇𝑝𝜈

𝑝2

)︂(︀
𝑝2 − 𝑚2

𝑎

)︀
+ 𝛿𝑎𝑏

𝑝𝜇𝑝𝜈

𝑝2
1
𝜉

(︀
𝑝2 − 𝜉𝑚2

𝑎

)︀
= 𝛿𝑎𝑏𝑑

−1
𝑋𝑎Δ𝜇𝜈

𝑋 ,

(4.101)

where a sum is implicit over 𝑋 ∈ 𝑇, 𝐿 according to the Einstein summation convention.
Inverting this expression gives the Feynman propagator,

𝑖𝐷𝜇𝜈
𝑎𝑏 (𝑝) = 𝛿𝑎𝑏𝑑𝑋𝑎Δ𝜇𝜈

𝑋 , (4.102)

since

−𝑖𝐷−1,𝜇𝜎
𝑎𝑐 𝑖𝐷𝑐𝑏,𝜎𝜈 =

∑︁
𝑐, 𝑋, 𝑌

(︀
𝛿𝑎𝑐 𝑑−1

𝑋𝑎 Δ𝜇𝜈
𝑋

)︀ (︀
𝛿𝑐𝑏 𝑑𝑌 𝑐 Δ𝑌,𝜎𝜈

)︀
= 𝛿𝑎𝑏

∑︁
𝑋

Δ𝜇
𝑋,𝜈 = 𝛿𝑎𝑏 𝑔𝜇

𝜈 . (4.103)

The last step follows immediately from the definitions (4.97).
Let 𝑖Σ𝜇𝜈

𝑎𝑏 (𝑝) be the sum of all 1PI diagrams of the gauge boson propagator,

𝑖Σ𝜇𝜈
𝑎𝑏 (𝑝) = 1PI𝑎, 𝜇 𝑏, 𝜈 . (4.104)

Due to the mixing of the 𝑍 boson and the photon, the corresponding off-diagonal terms
Σ𝜇𝜈

𝑍𝛾(𝑝) and Σ𝜇𝜈
𝛾𝑍(𝑝) are non-zero. Since the Lorentz indices of Σ𝜇𝜈

𝑎𝑏 (𝑝) can only be carried by
the metric 𝑔𝜇𝜈 or two four-momenta 𝑝𝜇𝑝𝜈 , the 1PI function must be of the form

𝑖Σ𝜇𝜈
𝑎𝑏 (𝑝) = 𝐴𝑎𝑏(𝑝2)𝑔𝜇𝜈 + 𝐵𝑎𝑏(𝑝2)𝑝𝜇𝑝𝜈 . (4.105)

Rather than into terms proportional to 𝑔𝜇𝜈 and 𝑝𝜇𝑝𝜈 , we equivalently split the 1PI function
into transversal and longitudinal contributions Σ𝑇,𝜇𝜈

𝑎𝑏 (𝑝) and Σ𝐿,𝜇𝜈
𝑎𝑏 (𝑝) – proportional to Δ𝜇𝜈

𝑇
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and Δ𝜇𝜈
𝐿 , respectively,

Σ𝜇𝜈
𝑎𝑏 (𝑝) = Σ𝑇,𝜇𝜈

𝑎𝑏 (𝑝) + Σ𝐿,𝜇𝜈
𝑎𝑏 (𝑝) ≡ Δ𝜇𝜈

𝑇 Σ𝑇
𝑎𝑏(𝑝2) + Δ𝜇𝜈

𝐿 Σ𝐿
𝑎𝑏(𝑝2) . (4.106)

In order to compute the full propagator 𝐺𝜇𝜈
𝑎𝑏 (𝑝), let us introduce one more abbreviation,

Σ̃𝑋
𝑎𝑏(𝑝2) ≡ 𝑑𝑋𝑏Σ𝑋

𝑎𝑏(𝑝2) . (4.107)

The full propagator is then given by14

𝐺𝜇𝜈
𝑎𝑏 (𝑝) = + 1PI + 1PI 1PI + · · ·

= 𝐷𝜇𝜈
𝑎𝑏 (𝑝) +

∑︁
𝑐, 𝑑

(𝐷𝜇𝜌
𝑎𝑐 (𝑝) 𝑖Σ𝑐𝑑,𝜌𝜎(𝑝) 𝐷𝜎𝜈

𝑑𝑏 (𝑝)) (4.108)

+
∑︁

𝑐, 𝑑, 𝑒, 𝑓

(︀
𝐷𝜇𝜌

𝑎𝑐 (𝑝) 𝑖Σ𝑐𝑑,𝜌𝜎(𝑝) 𝐷𝜎𝜂
𝑑𝑒 (𝑝) 𝑖Σ𝑒𝑓,𝜂𝜅(𝑝) 𝐷𝜅𝜈

𝑓𝑏

)︀
+ · · · .

Plugging in Eq. (4.102) and (4.106), the second term of Eq. (4.108) can be rewritten as∑︁
𝑐, 𝑑

𝐷𝜇𝜌
𝑎𝑐 (𝑝) 𝑖Σ𝑐𝑑,𝜌𝜎(𝑝) 𝐷𝜎𝜈

𝑑𝑏 (𝑝)

=
∑︁
𝑐, 𝑑

(︀
−𝑖𝛿𝑎𝑐𝑑𝑋𝑎Δ𝜇𝜌

𝑋

)︀
𝑖
(︀
Δ𝑌,𝜌𝜎Σ𝑌

𝑐𝑑(𝑝2)
)︀

(−𝑖𝛿𝑑𝑏𝑑𝑍𝑏Δ𝜎𝜈
𝑍 )

=
(︀
−𝑖𝑑𝑋𝑎Δ𝜇𝜌

𝑋

)︀∑︁
𝑌

(︀
Δ𝜈

𝑌,𝜌𝛿𝑌 𝑍𝑑𝑍𝑏Σ𝑌
𝑎𝑏(𝑝2)

)︀
=
(︀
−𝑖𝑑𝑋𝑎Δ𝜇𝜌

𝑋

)︀ (︀
Δ𝜈

𝑌,𝜌Σ̃𝑌
𝑎𝑏(𝑝2)

)︀
.

(4.109)

Here, also the property from Eq. (4.98) as well as the definition (4.107) was used. Similar
transformations are possible for the third (and all further) terms, such that the full propagator
reads

𝐺𝜇𝜈
𝑎𝑏 (𝑝) = −𝑖𝑑𝑋𝑎Δ𝜇𝜌

𝑋

(︃
𝛿𝑎𝑏𝑔

𝜈
𝜌 + Δ𝜈

𝑌,𝜌Σ̃𝑌
𝑎𝑏(𝑝2) +

∑︁
𝑐

(︁
Δ𝜂

𝑌,𝜌Σ̃𝑌
𝑎𝑐(𝑝2)

)︁(︁
Δ𝜈

𝑍,𝜂Σ̃𝑍
𝑐𝑏(𝑝2)

)︁
+ · · ·

)︃

=
∑︁
𝑋

(︀
−𝑖𝑑𝑋𝑎Δ𝜇𝜈

𝑋

)︀(︃
𝛿𝑎𝑏 + Σ̃𝑋

𝑎𝑏(𝑝2) +
∑︁

𝑐

Σ̃𝑋
𝑎𝑐(𝑝2)Σ̃𝑋

𝑐𝑏(𝑝2) + · · ·

)︃

=
∑︁
𝑋

(︀
−𝑖𝑑𝑋𝑎Δ𝜇𝜈

𝑋

)︀(︂ 1
1 − Σ̃𝑋(𝑝2)

)︂𝑎𝑏

. (4.110)

14 The gauge indices 𝑎, 𝑏, 𝑐 are not summed over implicitly by the Einstein summation convention in this
derivation, but only if indicated explicitly by a sum symbol. On the other hand, a sum over the
transversal/longitudinal indices 𝑋, 𝑌, 𝑍 is implied in accordance with the Einstein summation convention –
a sum over these indices is indicated explicitly only if there are more or less than two such indices to be
summed over, where the Einstein summation convention does not imply a sum.
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In the last step the geometric series for matrices was used [62].
The inverse of this full propagator is given by15

−𝑖𝐺−1,𝜇𝜈
𝑎𝑏 (𝑝) =

∑︁
𝑋

𝑑−1
𝑋𝑏Δ

𝜇𝜈
𝑋

(︀
𝛿𝑎𝑏 − Σ̃𝑋

𝑎𝑏(𝑝2)
)︀

=
∑︁
𝑋

Δ𝜇𝜈
𝑋

(︀
𝛿𝑎𝑏𝑑

−1
𝑋𝑏 − Σ𝑋

𝑎𝑏(𝑝2)
)︀

, (4.111)

since with this expression one finds∑︁
𝑐

𝐺−1,𝜇𝜎
𝑎𝑐 𝐺𝑐𝑏,𝜎𝜈 = 𝑔𝜇

𝜈 𝛿𝑎𝑏 . (4.112)

4.8.2 Counterterms in the Gauge Sector
The mass eigenstates of the 𝑍 boson 𝑍𝜇 and of the photon 𝐴𝜇 are rotated from their gauge
eigenstates in the same way as the Higgs mass eigenstates ℎ1 and ℎ2 are rotated from their
gauge eigenstates ℎ and 𝑠. Thus, the bare fields of the 𝑍 boson and the photon are connected
to the renormalized fields by a field-strength renormalization matrix 𝒵,(︂

𝑍𝜇
0

𝐴𝜇
0

)︂
=

√
𝒵
(︂

𝑍𝜇

𝐴𝜇

)︂
≈
(︂

1 + 1
2𝛿𝒵

)︂(︂
𝑍𝜇

𝐴𝜇

)︂
, (4.113)

exactly as it was the case for the Higgs bosons in Eq. (4.24). On the other hand, the 𝑊 ±

bosons are each other’s antiparticles and therefore have the same field-strength renormalization
constant 𝑍𝑊 :

𝑊 ±,𝜇
0 =

√︀
𝑍𝑊 𝑊 ±,𝜇 . (4.114)

Hence, writing the field-strength renormalization constants 𝒵 and 𝑍𝑊 into a 4 × 4 matrix
𝑍, all matrices 𝒜 = 𝐺𝜇𝜈 , 𝐺̂𝜇𝜈 , Σ̂, Σ, 𝑍 are diagonal except for a 2 × 2 block in the lower right
corner:

𝒜 =

⎛⎜⎜⎝
𝒜𝑊 𝑊 0 0 0

0 𝒜𝑊 𝑊 0 0
0 0 𝒜𝑍𝑍 𝒜𝑍𝛾

0 0 𝒜𝛾𝑍 𝒜𝛾𝛾

⎞⎟⎟⎠ . (4.115)

The inverse full propagator in Eq. (4.111) is computed in terms of bare quantities and
technically all the parameters it contains need to be equipped with an index 0. It is related
to the corresponding renormalized full propagator 𝐺̂𝜇𝜈

𝑎𝑏 by

−𝑖𝐺̂−1,𝜇𝜈(𝑝) =
√

𝑍
� (︀

−𝑖𝐺−1,𝜇𝜈(𝑝)
)︀√

𝑍 , (4.116)

where the propagators as well as the field-strength renormalizations are 4 × 4 matrices in
gauge space. This equation is completely analogous to Eq. (4.25) from the scalar case.

Plugging in Eq. (4.111) and expanding the parameters in physical terms and counterterms

15 Except for defining Σ(𝑝2) with a different overall sign, this corresponds to the equation in [56] and is the
generalization to a general gauge for the result given in [63].
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(note that 𝑑−1
𝑋𝑎0 = 𝑑−1

𝑋𝑎 − 𝛿𝑚2
𝑎), it follows from Eq. (4.116) that∑︁

𝑐, 𝑑

√
𝑍

�

𝑎𝑐

(︁
−𝑖𝐺−1,𝜇𝜈

𝑐𝑑 (𝑝)
)︁√

𝑍𝑑𝑏

=
∑︁

𝑋, 𝑐, 𝑑

(︂
𝛿𝑎𝑐 + 1

2𝛿𝑍�
𝑎𝑐

)︂
Δ𝜇𝜈

𝑋

(︀
𝛿𝑐𝑑

(︀
𝑑−1

𝑋𝑑 − 𝛿𝑚2
𝑑

)︀
− Σ𝑋

𝑐𝑑(𝑝2)
)︀(︂

𝛿𝑑𝑏 + 1
2𝛿𝑍𝑑𝑏

)︂

=
∑︁
𝑋

Δ𝜇𝜈
𝑋

(︂
𝛿𝑎𝑏𝑑

−1
𝑋𝑏 − Σ𝑋

𝑎𝑏(𝑝2) − 𝛿𝑎𝑏𝛿𝑚2
𝑎 + 1

2𝑑−1
𝑋𝑎𝛿𝑍𝑎𝑏 + 1

2𝑑−1
𝑋𝑏𝛿𝑍�

𝑎𝑏

)︂
!=
∑︁
𝑋

Δ𝜇𝜈
𝑋

(︁
𝛿𝑎𝑏𝑑

−1
𝑋𝑏 − Σ̂𝑋

𝑎𝑏(𝑝2)
)︁

= −𝑖𝐺̂−1,𝜇𝜈
𝑎𝑏 (𝑝) .

(4.117)

Here, Σ̂𝑋
𝑎𝑏 is the renormalized counterpart to Σ𝑋

𝑎𝑏, exactly as it was in the scalar case (see
Eq. (4.19)). Since Δ𝜇𝜈

𝑋 is orthogonal in the 𝑋 space according to Eq. (4.98), one may solve
for both the transverse and the longitudinal parts individually, which yields

Σ̂𝑋
𝑎𝑏(𝑝2) = Σ𝑋

𝑎𝑏(𝑝2) + 𝛿𝑎𝑏𝛿𝑚2
𝑎 − 1

2𝑑−1
𝑋𝑎𝛿𝑍𝑎𝑏 − 1

2𝑑−1
𝑋𝑏𝛿𝑍�

𝑎𝑏 . (4.118)

Imposing renormalization conditions on the transversal contributions is sufficient to fix
all counterterms. The on-shell renormalization conditions on the transversal contributions
of the renormalized 1PI function Σ̂𝑇

𝑎𝑏(𝑝) can be derived just as in the scalar case (see
Eqs. (4.29)–(4.35)) and yield

Re Σ̂𝑇
𝑎𝑎(𝑚2

𝑎) != 0 , for 𝑎 = 𝑊, 𝑍, 𝛾 , (4.119)

Re 𝜕Σ̂𝑇
𝑎𝑎(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=𝑚2

𝑎

!= 0 , for 𝑎 = 𝑊, 𝑍, 𝛾 , (4.120)

Re Σ̂𝑇
𝑍𝛾(𝑚2

𝑎) = Re Σ̂𝑇
𝛾𝑍(𝑚2

𝑎) != 0 , for 𝑎 = 𝑍, 𝛾 . (4.121)

Of course, 𝑚2
𝛾 = 0. Employing these conditions on Eq. (4.118), the counterterms can be fixed

as follows:

𝛿𝑚2
𝑎 = −Re Σ𝑇

𝑎𝑎(𝑚2
𝑎) , for 𝑎 = 𝑊, 𝑍 , (4.122)

𝛿𝑍𝑎𝑎 = Re 𝜕Σ𝑇
𝑎𝑎(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
𝑝2=𝑚2

𝑎

, for 𝑎 = 𝑊, 𝑍, 𝛾 , (4.123)

𝛿𝑍𝑍𝛾 = − 2
𝑚2

𝑍

Re Σ𝑇
𝑍𝛾(0) , (4.124)

𝛿𝑍𝛾𝑍 = 2
𝑚2

𝑍

Re Σ𝑇
𝑍𝛾(𝑚2

𝑍) . (4.125)

Note that Σ𝑇
𝑎𝑏(𝑝2) = Σ𝑇

𝑏𝑎(𝑝2), but 𝛿𝑍𝑎𝑏 ̸= 𝛿𝑍𝑏𝑎.
By definition, the elementary charge 𝑒 is the coupling constant of the fermion–fermion–

photon vertex. During renormalization, the bare elementary charge is split into a physical
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term and a counterterm similarly to all other parameters:

𝑒0 = 1
𝑍𝑒

𝑒 ≈ 𝑒 − 1
2𝛿𝑍𝑒𝑒 . (4.126)

Since each such kind of a vertex has precisely one external photon, in QED the charge
renormalization can be used to cancel the (infinite) field-strength renormalization factor of
the photon field 𝛿𝑍𝛾𝛾 by choosing [34]

𝛿𝑍𝑒 = 𝛿𝑍𝛾𝛾 , (4.127)

such that the sum in Fig. 4.3 is finite.
In the electroweak theory, however, the photon and the 𝑍 boson states mix at one-loop

order and a photon can couple to a fermion through a 𝑍 propagator [64], as displayed in
Fig. 4.4. Since this is an additional possibility for a photon to couple to a fermion, an
additional term in 𝛿𝑍𝑒 is required in order to cancel its infinities.

Note that the expression for the diagram in Fig. 4.4 can be derived from the first diagram
in Fig. 4.3 by exchanging the full propagator 𝐺𝜇𝜈

𝛾𝛾 → 𝐺𝜇𝜈
𝛾𝑍 and by replacing the coupling

factor of the photon–fermion–fermion vertex by the 𝑍 boson–fermion–fermion vertex. The
latter is given by 𝑔 sin2 𝜃𝑤/ cos 𝜃𝑤.16 Hence, the two diagrams can be related as it is shown
in Fig. 4.4

Thus, including the additional contribution that is required to cancel the full mixing
propagator, 𝛿𝑍𝑒 is given by [65]17

𝛿𝑍𝑒 = 𝛿𝑍𝛾𝛾 + 1
𝑒

𝑔 sin2 𝜃𝑤

cos 𝜃𝑤
· 𝛿𝑍𝛾𝛾

⃒⃒⃒⃒
𝛿𝑍𝛾𝛾→𝛿𝑍𝑍𝛾

= Re
𝜕Σ𝑇

𝛾𝛾(𝑝2)
𝜕𝑝2

⃒⃒⃒⃒
⃒
𝑝2=0

− 2
𝑚2

𝑍

sin 𝜃𝑤

cos 𝜃𝑤
Re Σ𝑇

𝛾𝑍(0) .

(4.128)

Here, Eqs. (4.123), (4.124) and 𝑒 = 𝑔 sin 𝜃𝑤 [34] were used.
Writing the weak coupling as [34]

𝑔 = 𝑒√︁
1 − 𝑚2

𝑊 /𝑚2
𝑍

, (4.129)

𝛾
𝛾

+ 𝛾

Figure 4.3: The QED vertex counterterm cancels the propagator correction of the photon if
𝛿𝑍𝑒 = 𝛿𝑍𝛾𝛾 .

16 As a matter of fact, this is only the part of the coupling that is equal for left- and right-handed fermions
[34]. Due to the Ward–Takahashi identity, all other contributions to this coupling vanish [64, 65].

17 Note that in [65], the definitions of 𝛿𝑍𝑒 differ by a factor of −1/2 and the definitions of the 1PI functions
by a factor of −1.
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𝛾𝑍 = 1
𝑒

𝑔 sin2 𝜃𝑤

cos 𝜃𝑤
· 𝛾

𝛾
⃒⃒⃒⃒
𝐺𝜇𝜈

𝛾𝛾→𝐺𝜇𝜈
𝛾𝑍

.

Figure 4.4: In the electroweak theory, the photon can couple to a fermion also through a 𝑍
boson. The expression of the corresponding diagram can be related to the expression of the
diagram where a photons couples to the fermion.

its counterterm can be given as

𝛿𝑔

𝑔
= −1

2𝛿𝑍𝑒 + 1
2(𝑚2

𝑍 − 𝑚2
𝑊 )
(︀
𝛿𝑚2

𝑊 − cos2 𝜃𝑤𝛿𝑚2
𝑍

)︀
, (4.130)

with the mass counterterms being given in Eq. (4.122).

4.9 𝑞𝑞–Higgs Vertex Renormalization
The term in the Lagrangian that describes the vertex of a quark 𝑞, antiquark 𝑞 and a Higgs
boson ℎ𝑖 reads

L ⊃ 𝐷𝑖0ℎ𝑖0
(︀
𝑞𝑅

0 𝑞𝐿
0 + 𝑞𝐿

0 𝑞𝑅
0
)︀

, (4.131)

where, using 𝑣0 = 2𝑚𝑊 0/𝑔0 [34],

𝐷10 = −𝑚𝑞0 cos 𝛼0
𝑣0

= −𝑔0𝑚𝑞0 cos 𝛼0
2𝑚𝑊 0

, 𝐷20 = 𝑚𝑞0 sin 𝛼0
𝑣0

= 𝑔0𝑚𝑞0 sin 𝛼0
2𝑚𝑊 0

. (4.132)

Writing these bare vertex factors as a sum of a physical term and a counterterm,

𝐷𝑖0 = 𝐷𝑖 + 𝛿𝐷𝑖 , (4.133)

the counterterms can be expressed as

𝛿𝐷1 = 𝑔𝑚𝑞

2𝑚𝑊

(︂
sin 𝛼 𝛿𝛼 + cos 𝛼

(︂
𝛿𝑚2

𝑊

2𝑚2
𝑊

− 𝛿𝑔

𝑔
− 𝛿𝑚𝑞

𝑚𝑞

)︂)︂
,

𝛿𝐷2 = 𝑔𝑚𝑞

2𝑚𝑊

(︂
cos 𝛼 𝛿𝛼 − sin 𝛼

(︂
𝛿𝑚2

𝑊

2𝑚2
𝑊

− 𝛿𝑔

𝑔
− 𝛿𝑚𝑞

𝑚𝑞

)︂)︂
.

(4.134)

The bare coupling terms in Eq. (4.131) can be turned into renormalized coupling terms as

𝐷𝑖0ℎ𝑖0
(︀
𝑞𝑅

0 𝑞𝐿
0 + 𝑞𝐿

0 𝑞𝑅
0
)︀

= 𝐷̂𝑖ℎ𝑖

(︀
𝑞𝑅𝑞𝐿 + 𝑞𝐿𝑞𝑅

)︀
, (4.135)

where plugging in the expansions (4.133), (4.24) and (4.80) leads to

𝐷̂𝑖 = 𝐷𝑖 + 𝛿𝐷𝑖 + 1
2𝐷𝑗𝛿𝑍𝑗𝑖 + 1

2𝐷𝑖

(︀
𝛿𝑍𝑅 + 𝛿𝑍𝐿

)︀
⏟  ⏞  

≡ 𝛿𝐷mix
𝑖

. (4.136)
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4.10 Overview: Counter Propagators and Vertices
In the beginning of this chapter the goal was set to compute the counterterms in Fig. 4.2.
This section aims for presenting the results for these counterterms that have been derived in
detail in the previous sections.

As it becomes obvious by comparing Eqs. (4.15) and (4.17), the counterterm propagator is
the difference between the bare 1PI function Σ or Ξ and the renormalized 1PI function Σ̂ or
Ξ̂. Using Eq. (4.36), the counterterm propagators for the Higgs boson read

ℎ𝑖 ℎ𝑖 = 𝑖
(︀(︀

𝑝2 − 𝑚2
𝑖

)︀
𝛿𝑍𝑖𝑖 − 𝛿𝑚2

𝑖 − 𝛿𝑇𝑖𝑖

)︀
, (4.137)

ℎ𝑖 ℎ𝑗 = 𝑖

2
(︀(︀

𝑝2 − 𝑚2
𝑖

)︀
𝛿𝑍𝑖𝑗 +

(︀
𝑝2 − 𝑚2

𝑗

)︀
𝛿𝑍𝑗𝑖 − 2 𝛿𝑇𝑖𝑗

)︀
, for 𝑖 ̸= 𝑗 .

Similarly, for the DM–Higgs boson vertex and for the quark–Higgs boson vertex it follows
from Eqs. (4.77) and (4.136) that

ℎ𝑖

𝜒 𝜒 = 𝛿𝐶𝑖 + 𝛿𝐶mix
𝑖 ,

ℎ𝑖

𝑞 𝑞 = 𝛿𝐷𝑖 + 𝛿𝐷mix
𝑖 . (4.138)

To make sense out of the expressions (4.137)–(4.138), the reader is referred to all the
formulas for the diverse counterterms that have been derived in this chapter:

𝛿𝑍11, 𝛿𝑍22 see Eq. (4.37) 𝛿𝑇𝑖 see Eq. (4.49)
𝛿𝑚2

𝑖 , 𝛿𝑍12, 𝛿𝑍21 see Eq. (4.58) 𝛿𝛼 see Eq. (4.67)
𝛿𝑇𝑖𝑗 see Eq. (4.57) 𝛿𝑍𝜒 see Eq. (4.71)
𝛿𝐶𝑖 see Eq. (4.75) 𝛿𝑚2

𝑊 , 𝛿𝑚2
𝑍 see Eq. (4.122)

𝛿𝐶mix
𝑖 see Eq. (4.77) 𝛿𝑔 see Eq. (4.130)

𝛿𝐷𝑖 see Eq. (4.134) 𝛿𝑍𝑒 see Eq. (4.128)
𝛿𝐷mix

𝑖 see Eq. (4.136) 𝛿𝑚𝑞, 𝑑𝑍𝑅, 𝑑𝑍𝐿 see Eq. (4.96)

Using these formulas it is possible to express all the diagrams (4.137)–(4.138) in terms of free
parameters and the following 1PI functions (and their derivatives) only:

Higgs propagator: 𝑖Σ𝑖𝑗(𝑝2) = ℎ𝑖 1PI ℎ𝑗 Sec. 4.2 , Fig. 4.6 ,

Higgs tadpole: 𝑖Ξ𝑖 = ℎ𝑖 1PI Sec. 4.3 , Fig. 4.7 ,

DM propagator: 𝑖Σ𝜒(𝑝2) = 𝜒 1PI 𝜒 Sec. 4.5 , Fig. 4.8 ,
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fermion propagator: 𝑖Σ(𝑝) = 𝑓 1PI 𝑓 Sec. 4.7 , Fig. 4.9 ,

gauge boson propagator: 𝑖Σ𝜇𝜈
𝑎𝑏 (𝑝) = 1PI𝑎, 𝜇 𝑏, 𝜈 Sec. 4.8 . Fig. 4.10 .

The functions Σ𝑅(𝑝2), Σ𝐿(𝑝2) and Σ𝑆(𝑝2) that appear in the formulas for 𝛿𝑚𝑞, 𝛿𝑍𝑅 and
𝛿𝑍𝐿 (4.96) are the different contributions to the fermion 1PI function 𝑖Σ(𝑝) according to
Eq. (4.85). Note that the difference in having bare or renormalized fields on the external
lines in these diagrams is merely a factor 𝑍; since the 1PI diagrams are already of NLO, such
a factor would only contribute to NNLO. The specific diagrams that contribute to these 1PI
functions at one-loop order are given in Figs. 4.6–4.10.

Note that the total amplitude is independent of the factors 𝛿𝑍𝑖𝑗 of the internal Higgs
bosons. That is, these factors cancel completely in the sum of the tree diagrams in Fig. 4.5.

∑︁
𝑖, 𝑗

𝜒 𝜒

𝑞 𝑞

ℎ𝑖

ℎ𝑗

+
∑︁

𝑖

𝜒 𝜒

𝑞 𝑞
ℎ𝑖

+
∑︁

𝑖

𝜒 𝜒

𝑞 𝑞

ℎ𝑖

Figure 4.5: The field-strength renormalization factors 𝑍𝑖𝑗 of the Higgs bosons that appear in
all of the counterterms in Fig. 4.2 cancel completely when all counterterm diagrams are properly
summed up.
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Table 4.1: In Figs. 4.6–4.10 and 5.4–5.6, Φ𝑖 is used as an abbreviation for certain sets of particles.
Their definition is given in the list below. Here, 𝜂𝑍 and 𝜂+ is the Faddeev–Popov ghost of the
𝑍 and 𝑊 + boson, respectively. 𝑓+ = 𝑢, 𝑐, 𝑡, 𝑑, 𝑠, 𝑏, 𝑒, 𝜇, 𝜏 is short for all charged fermions and
𝑓 = 𝑓+, 𝜈𝑒, 𝜈𝜇, 𝜈𝜏 for all fermions of the SM.

Φ1 = ℎ1, ℎ2, 𝜒, 𝐺0, 𝐺+, 𝑍, 𝑊 +

Φ2 = 𝜒, 𝐺0, 𝐺+, 𝑍, 𝑊 +, 𝜂𝑍 , 𝜂+, 𝑓+

Φ3 = ℎ1, ℎ2, 𝜒, 𝐺0, 𝐺+, 𝑍, 𝑊 +, 𝜂𝑍 , 𝜂+, 𝑓+

Φ4 = ℎ1, ℎ2, 𝜒, 𝐺0, 𝐺+

Φ5 = ℎ1, ℎ2, 𝐺0, 𝐺+, 𝛾, 𝑍, 𝑊 +

Φ6 = 𝐺+, 𝑊 +, 𝜂+, 𝑓+

Φ7 = ℎ1, ℎ2, 𝐺0, 𝐺+, 𝑊 +

Φ8 = 𝐺+, 𝑊 +, 𝜂+, 𝑓

Φ9 = ℎ1, ℎ2, 𝐺0, 𝛾, 𝑍

Φ10 = ℎ1, ℎ2, 𝛾, 𝑍

Φ11 = 𝜒, 𝐺0, 𝐺+

Φ12 = 𝐺0, 𝐺+, 𝑍, 𝑊 +
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ℎ𝑖 ℎ𝑗

Φ1a)

ℎ𝑖 ℎ𝑗

b) ℎ𝑘

ℎ𝑙

ℎ𝑖 ℎ𝑗

c) Φ2

Φ2

ℎ𝑖 ℎ𝑗

d) 𝐺0

𝑍

ℎ𝑖 ℎ𝑗

e) 𝐺+

𝑊 +

Figure 4.6: The one-loop corrections to the Higgs propagator; the 1PI function of the Higgs
propagator 𝑖Σ𝑖𝑗(𝑝2) was computed as the sum of these diagrams. Here, 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2. For the
definition of Φ1 and Φ2 see Tab. 4.1. For each combination of external Higgs bosons (i. e. each
combination of 𝑖 and 𝑗) one is left with 29 individual diagrams (note that the loop direction
matters in diagram e, which doubles the number of diagrams of this type).

ℎ𝑖 Φ3

Figure 4.7: The one-loop corrections to the Higgs tadpole; the 1PI function of the Higgs tadpole
𝑖Ξ𝑖(𝑝2) was computed as the sum of these diagrams. Here, 𝑖 = 1, 2. For the definition of Φ3 see
Tab. 4.1. For each external Higgs ℎ𝑖 one is then left with 16 individual diagrams.

𝜒 𝜒

Φ4a)

𝜒 𝜒

b) 𝜒

ℎ𝑖

Figure 4.8: The one-loop corrections to the DM propagator; the 1PI function of the DM
propagator 𝑖Σ𝜒(𝑝2) was computed as the sum of these diagrams. Here, 𝑖 = 1, 2. For the definition
of Φ4 see Tab. 4.1. In total one is left with 7 individual diagrams.

𝑞 𝑞

Φ5

𝑞′

Figure 4.9: The one-loop electroweak corrections (there is also a QCD correction including
a gluon, which is not taken into account) to the quark propagator; the 1PI function of the q
propagator 𝑖Σ(𝑝) was computed as the sum of these diagrams. For the definition of Φ5 see
Tab. 4.1. In diagrams that include 𝐺+ or 𝑊 + particles, 𝑞′ is the corresponding down-type quark
for an up-type quark 𝑞 and the corresponding up-type quark for a down-type quark 𝑞 (in all other
diagrams, 𝑞′ = 𝑞). For each external quark 𝑞, one is left with 7 individual diagrams.
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𝑎 𝑏

𝐺+, 𝑊 +
a)

𝑎 𝑏

b) Φ6

Φ6

𝑎 𝑏

c) 𝐺+

𝑊 +

𝑍 𝑍

Φ7d)

𝑍 𝑍

e) Φ8

Φ8

𝑍 𝑍

f) 𝐺+

𝑊 +

𝑍 𝑍

g) 𝐺0, 𝑍

ℎ𝑖

𝑊 + 𝑊 +

Φ5h)

𝑊 + 𝑊 +

i) 𝑓

𝑓 ′

𝑊 + 𝑊 +

j) 𝐺+

Φ9

𝑊 + 𝑊 +

k) 𝜂+

𝜂𝛾 , 𝜂𝑍

𝑊 + 𝑊 +

l) 𝑊 +

Φ10

Figure 4.10: The one-loop corrections to the electroweak gauge boson propagator; the 1PI
function of the gauge boson propagator 𝑖Σ𝜇𝜈

𝑎𝑏 (𝑝) was computed as a sum of these diagrams. Here,
(𝑎, 𝑏) = (𝛾, 𝛾), (𝛾, 𝑍), (𝑍, 𝛾). That is, the diagrams a–c contribute to 𝑖Σ𝜇𝜈

𝛾𝛾 , 𝑖Σ𝜇𝜈
𝛾𝑍 and 𝑖Σ𝜇𝜈

𝑍𝛾 only,
but not to the 1PI functions of the 𝑍 and 𝑊 + boson propagators. Their constituents are given
by diagrams d–g and h–l, respectively. Here, 𝑖 = 1, 2. For the definition of Φ5–Φ10, 𝑓 , 𝜂+, 𝜂𝑍 and
𝜂𝛾 see Tab. 4.1. If 𝑓 is an up-type quark or a charged lepton, 𝑓 ′ is the corresponding down-type
quark or uncharged lepton, respectively, of the same generation (for example, 𝑐′ = 𝑠, 𝜏 ′ = 𝜈𝜏 ).
For given 𝑎, 𝑏, a–c illustrate 16 individual diagrams, d–g correspond to 26 and h–l to 24 individual
diagrams (note that the loop direction matters in diagrams c and f, which doubles the number of
diagrams of this type).



CHAPTER 5
The Amplitude of Dark Matter Direct Detection in the DCxSM

Direct Detection experiments search for DM particles by aiming to measure their interactions
with a target nucleus. In Chapter 3 it was worked out how the cross section for scattering with
a nucleus can be related to scattering with a nucleon. Furthermore, in Sec. 3.4 a formalism
was introduced for the computation of the scattering with a nucleon using Wilson coefficients
as effective couplings between the DM particle and the elementary constituents of the nucleon:
the quarks and gluons. In this chapter, we will present which diagrams are taken into account
for the computation of the Wilson coefficients and which approximations are applied.

In the DCxSM, 𝜒 is the DM candidate. The interaction between 𝜒 and a quark or a gluon
is schematically shown in Fig. 5.1. In Sec. 5.1, this process is examined at tree level. The
NLO corrections to the process with external quarks are presented in Sec. 5.2. Higher-order
diagrams with external gluons are considered in Sec. 5.3. Finally, it is shown in Sec. 5.4 how
the amplitudes are matched to the effective Lagrangian of Eq. (3.24), i. e. how the Wilson
coefficients are extracted.

5.1 Tree Level
At tree level, there are no diagrams where the DM particle 𝜒 scatters with a gluon 𝑔; all
tree-level contributions to the diagram in Fig. 5.1 are of the topology as shown in Fig. 4.1a.
Only the Higgs bosons ℎ1 and ℎ2 are possible mediators, since only they are able to form
a three-vertex with two 𝜒 particles according to Eq. (2.9) (using Eq. (2.13)). Hence, for a
given quark 𝑞, the total amplitude for this process at tree level is given by

𝜒 𝜒

𝑞 𝑞
ℎ1 +

𝜒 𝜒

𝑞 𝑞
ℎ2 = −𝑖

(𝑚2
1 − 𝑚2

2) cos 𝛼 sin 𝛼

(𝑡 − 𝑚2
1)(𝑡 − 𝑚2

2)𝑣𝑣S
𝑚𝑞𝑡 𝑢̄(𝑝2)𝑢(𝑝1) , (5.1)

where the parameters 𝑚1, 𝑚2, 𝑣, 𝑣S and 𝛼 have been introduced in Chapter 2. Furthermore,
𝑚𝑞 is the quark mass, 𝑢 is the quark spinor, 𝑢̄ is the antiquark spinor and 𝑝1 and 𝑝2 are the
incoming and outgoing quark momenta, respectively, and 𝑡 = (𝑝2 − 𝑝1)2 is the Mandelstam

𝜒 𝜒

𝑞 or 𝑔 𝑞 or 𝑔

Figure 5.1: Schematic diagram of an interaction between a DM particle and a quark or gluon.
The blob represents the sum of all possible diagrams with the corresponding external particles.
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𝜒 𝜒

𝑞 𝑞

=
𝜒 𝜒

𝑞 𝑞
+

𝜒 𝜒

𝑞 𝑞
+

𝜒 𝜒

𝑞 𝑞

+
𝜒 𝜒

𝑞 𝑞
+

𝜒 𝜒

𝑞 𝑞
+

𝜒 𝜒

𝑞 𝑞

Figure 5.2: One-loop electroweak corrections to DM–quark scattering. They are given by
propagator corrections, vertex corrections, box and triangle diagrams.

variable that corresponds to the square of the momentum transfer. As discussed in Eqs. (3.5)–
(3.6) and below Eq. (3.14), the momentum transfer is negligible for Direct Detection processes
and hence the tree-level amplitude vanishes.

5.2 NLO Diagrams with External Quarks
Of all the diagrams that contribute to the Direct Detection process of Fig. 5.1, in this section,
the NLO diagrams with external quarks are considered. They are given by vertex and
propagator corrections to the tree-level diagrams as well as by box and triangle diagrams, as
displayed in Fig. 5.2.

All the mediators in these diagrams are Higgs bosons, that is either ℎ1 or ℎ2. Only for the
triangle diagrams the mediators can additionally be 𝐺0 or 𝐺+, as shown in Fig. 5.3.

Except for only using momentum configurations with zero momentum transfer, the vertex
and propagator corrections are computed without any approximation. Details are given in
Sec. 5.2.1. The box and triangle diagrams are simplified using an expansion for a small quark
momentum; this procedure will be presented in Sec. 5.2.2.

5.2.1 Propagator and Vertex Corrections
All propagator correction diagrams, i. e. all diagrams that are represented by the first diagram
in the sum in Fig. 5.2, are given in Fig. 5.4. Similarly, all vertex correction diagrams for the

𝜒 𝜒

𝑞 𝑞
=

2∑︁
𝑖, 𝑗=1

𝜒 𝜒

𝑞 𝑞
ℎ𝑖 ℎ𝑗 +

𝜒 𝜒

𝑞 𝑞
𝐺0 𝐺0 +

𝜒 𝜒

𝑞 𝑞
𝐺+ 𝐺+

𝑞′

.

Figure 5.3: Possible mediators of triangle diagrams. While all other diagrams in Fig. 5.2 only
give non-zero contributions if the mediators are either ℎ1 or ℎ2, for the triangle diagrams also
Goldstone bosons 𝐺0 and 𝐺+ have to be taken into account as mediators. If 𝑞 is an up-type
quark, then 𝑞′ is the corresponding down-type quark of the same generation (note that CKM
mixing is neglected in this work). If 𝑞 is a down-type quark, then 𝑞′ is the corresponding up-type
quark and the arrows of the 𝐺+ propagators must be reversed.
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𝜒 𝜒

𝑞 𝑞

Φ1

a)
ℎ𝑖

ℎ𝑗

𝜒 𝜒

𝑞 𝑞

b)
ℎ𝑖

ℎ𝑘 ℎ𝑙

ℎ𝑗

𝜒 𝜒

𝑞 𝑞

c)
ℎ𝑖

Φ2 Φ2
ℎ𝑗

𝜒 𝜒

𝑞 𝑞

d)
ℎ𝑖

𝐺0 𝑍
ℎ𝑗

𝜒 𝜒

𝑞 𝑞

e)
ℎ𝑖

𝐺+ 𝑊 +

ℎ𝑗

𝜒 𝜒

𝑞 𝑞

f)
ℎ𝑖

ℎ𝑗

Figure 5.4: One-loop electroweak corrections to the ℎ𝑖 propagator. Here, 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2. For
the definitions of Φ1 and Φ2 see Tab. 4.1. For each external quark 𝑞 one is then left with 116
individual diagrams a–e (note that the loop direction matters in diagram e, which doubles the
number of diagrams of this type). In addition, the four (for 𝑖, 𝑗 = 1, 2) counter propagator
diagrams f are required to renormalize these corrections.

𝜒 𝜒

𝑞 𝑞

a)
𝜒

ℎ𝑗 ℎ𝑘

ℎ𝑖

𝜒 𝜒

𝑞 𝑞

b)
𝜒

𝜒 𝜒

ℎ𝑖

𝜒 𝜒

𝑞 𝑞

c)
𝜒

ℎ𝑗 ℎ𝑖

𝜒 𝜒

𝑞 𝑞

d)
𝜒

ℎ𝑗ℎ𝑖

𝜒 𝜒

𝑞 𝑞

e)
ℎ𝑗 ℎ𝑘

ℎ𝑖

𝜒 𝜒

𝑞 𝑞

f)
Φ11 Φ11

ℎ𝑖

𝜒 𝜒

𝑞 𝑞

g)

ℎ𝑖

Figure 5.5: One-loop electroweak corrections to the 𝜒𝜒ℎ𝑖 vertex. Here, 𝑖, 𝑗, 𝑘 = 1, 2. For the
definition of Φ11 see Tab. 4.1. For each external quark 𝑞, one is then left with 32 individual
diagrams a–f. In addition, the two (for 𝑖 = 1, 2) counter vertex diagrams g are required to
renormalize these corrections.

𝜒 𝜒

𝑞 𝑞

a)
ℎ𝑖

ℎ𝑗 ℎ𝑘

𝑞

𝜒 𝜒

𝑞 𝑞

b)
ℎ𝑖

Φ12 Φ12

𝑞′

𝜒 𝜒

𝑞 𝑞

c)
ℎ𝑖

𝑞′ 𝑞′

Φ5

𝜒 𝜒

𝑞 𝑞

d)
ℎ𝑖

𝐺0, 𝐺+ 𝑍, 𝑊 +

𝑞′

𝜒 𝜒

𝑞 𝑞

e)
ℎ𝑖

𝑍, 𝑊 + 𝐺0, 𝐺+

𝑞′

𝜒 𝜒

𝑞 𝑞

f)
ℎ𝑖

Figure 5.6: One-loop electroweak corrections to the 𝑞𝑞ℎ𝑖 vertex. Here, 𝑖, 𝑗, 𝑘 = 1, 2. For the
definitions of Φ5 and Φ12 see Tab. 4.1. In diagrams that include 𝐺+ or 𝑊 + particles, 𝑞′ is the
corresponding down-type quark for an up-type quark 𝑞 and the corresponding up-type quark
for a down-type quark 𝑞 (in all other diagrams, 𝑞′ = 𝑞). For each external quark 𝑞, one is left
with 38 individual diagrams a–e. In addition, the two (for 𝑖 = 1, 2) counter vertex diagrams f are
required to renormalize these corrections.
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(“upper”) DM vertex 𝜒𝜒ℎ𝑖 and for the (“lower”) quark vertex 𝑞𝑞ℎ𝑖 are given in Figs. 5.5 and
5.6, respectively.

Including the diagrams with a counterterm (i. e. Fig. 5.4f, Fig. 5.5g and Fig. 5.6f) renders
the respective corrections UV finite. The counterterms have been constructed in Chapter 4.

Note that, if summed over 𝑖 = 1, 2, the diagram in Fig. 5.6c is proportional to the tree-level
amplitude given in Eq. (5.1). Hence, in the limit of vanishing momentum transfer, this
diagram does not contribute. That is, for example,

∑︁
𝑖

𝜒 𝜒

𝑞 𝑞

ℎ𝑖
𝑞 𝑞

ℎ𝑗

∼
∑︁

𝑖

𝜒 𝜒

𝑞 𝑞
ℎ𝑖 ∼ 𝑡 = 0 (5.2)

in the limit 𝑡 → 0. Thus, also the infrared (IR) divergent diagram in Fig. 5.6c with a photon
in the loop (i. e. the case Φ5 = 𝛾) as well as IR divergent terms of the counterterm vanish.

In addition to the diagrams given in Figs. 5.4–5.6, there are propagator and vertex correction
diagrams with mediators other than the Higgs bosons that are allowed by the Feynman rules.
However, all of them vanish identically for different reasons. For details see App. B.

5.2.2 Box and Triangle Diagrams
There are three topologies of box and triangle diagrams for DM scattering with a quark.
They are presented in Fig. 5.7. For simplicity, we only consider triangle diagrams with Higgs
boson mediators in this section, but not the triangle diagrams with 𝐺0 and 𝐺+ mediators
(see Fig. (5.3)). They are treated in exactly the same way.

The momenta that are introduced in these diagrams reflect the approximation of no
momentum transfer, such that the incoming and outgoing momenta of the DM particle 𝜒 are
the same and so are the incoming and outgoing momenta of the quark 𝑞. The amplitudes are

𝑖ℳ�
𝑖𝑗 ≡

𝜒 𝜒

𝑞 𝑞

𝑝1 𝑝1 − 𝑞 𝑝1

𝑞 ℎ𝑖 𝑞ℎ𝑗

𝑝2 𝑝2 + 𝑞 𝑝2

+

𝜒 𝜒

𝑞 𝑞

𝑞 𝑞

ℎ𝑗 ℎ𝑖

𝑝1 𝑝1 − 𝑞 𝑝1

𝑝2 𝑝2 + 𝑞 𝑝2

𝑖ℳΔ
𝑖𝑗 ≡

𝜒 𝜒

𝑞 𝑞

𝑞 𝑞

ℎ𝑖 ℎ𝑗

𝑝1 𝑝1

𝑝2 𝑝2 + 𝑞 𝑝2

Figure 5.7: Triangle and Box Diagram Topologies for DM–Quark Scattering. There are two
box topologies and one triangle topology (of course, there is no vertex in the center of the second
diagram that would connect the two diagonal lines).
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given by

𝑖ℳ�
𝑖𝑗 = 𝑖4𝐴𝑖𝑗 𝑢̄(𝑝2)

ˆ
𝑑4𝑞

(2𝜋)4
1

𝑞2 − 𝑚2
𝑖

1
(𝑝1 − 𝑞)2 − 𝑚2

𝜒

1
𝑞2 − 𝑚2

𝑗

·
(︂

/𝑝2 + /𝑞 + 𝑚𝑞

(𝑝2 + 𝑞)2 − 𝑚2
𝑞

+ /𝑝2 − /𝑞 + 𝑚𝑞

(𝑝2 − 𝑞)2 − 𝑚2
𝑞

)︂
𝑢(𝑝2) ,

(5.3)

𝑖ℳΔ
𝑖𝑗 = 𝑖4𝐵𝑖𝑗 𝑢̄(𝑝2)

ˆ
𝑑4𝑞

(2𝜋)4
1

𝑞2 − 𝑚2
𝑖

1
𝑞2 − 𝑚2

𝑗

/𝑝2 + /𝑞 + 𝑚𝑞

(𝑝2 + 𝑞)2 − 𝑚2
𝑞

𝑢(𝑝2) . (5.4)

𝐴𝑖𝑗 and 𝐵𝑖𝑗 are abbreviations for the couplings that occur in the diagrams in Fig. 5.7. It
holds 𝐴𝑖𝑗 = 𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 and 𝐵𝑖𝑗 = 𝑎𝑖𝑎𝑗𝑏𝑖𝑗 , if 𝑎𝑖, 𝑏𝑖 and 𝑏𝑖𝑗 are the coefficients of ℎ𝑖𝑞𝑞, ℎ𝑖𝜒

2 and
ℎ𝑖ℎ𝑗𝜒2 in the Lagrangian, respectively. Explicitly, they read

𝑎1 = −𝑖
𝑚𝑞 cos 𝛼

𝑣
, 𝑎2 = −𝑖

𝑚𝑞 sin 𝛼

𝑣
, 𝑏1 = −𝑖

𝑚2
1 sin 𝛼

𝑣S
, 𝑏2 = −𝑖

𝑚2
2 cos 𝛼

𝑣S
,

𝑏11 = sin 𝛼

4𝑣𝑣2
S

(︀
𝑣S
(︀
𝑚2

2 − 𝑚2
1
)︀

cos3 𝛼 + 𝑣𝑚2
2 cos2 𝛼 sin 𝛼 + 𝑣𝑚2

1 sin3 𝛼
)︀

,

𝑏22 = cos 𝛼

4𝑣𝑣2
S

(︀
𝑣𝑚2

2 cos3 𝛼 + 𝑣𝑚2
1 cos 𝛼 sin2 𝛼 + 𝑣S

(︀
𝑚2

2 − 𝑚2
1
)︀

sin3 𝛼
)︀

,

𝑏12 = cos 𝛼 sin 𝛼

4𝑣𝑣2
S

(︀
2𝑣𝑚2

2 cos2 𝛼 + 2𝑣𝑚2
1 sin2 𝛼 − 𝑣S

(︀
𝑚2

2 − 𝑚2
1
)︀

sin 3𝛼
)︀

.

(5.5)

The main contributions to these integrals come from the regions close to the poles of the
propagators, that is where 𝑞2 is close to the squared Higgs masses 𝑚2

1 and 𝑚2
2, which are

of the GeV order. In Direct Detection experiments, the target nucleus is almost at rest
and hence the energy of the nucleons can be approximated by the Fermi energy, which is
in the MeV order [66]. Thus, the approximation 𝑝2 ≪ 𝑞 is valid in these integrals and the
denominators that contain 𝑝2 can be expanded as follows [37, 67],

1
(𝑝2 ± 𝑞)2 − 𝑚2

𝑞

= 1
𝑞2 ± 2𝑝2 · 𝑞

= 1
𝑞2 ∓ 2𝑝2 · 𝑞

𝑞4 + 𝒪

(︃(︂
𝑝2 · 𝑞

𝑞2

)︂2
)︃

. (5.6)

Using this approximation as well as the Dirac equation /𝑝𝑢(𝑝) = 𝑚𝑞𝑢(𝑝) yields

𝑖ℳ�
𝑖𝑗 = 𝐴𝑖𝑗 𝑢̄(𝑝2)

ˆ
𝑑4𝑞

(2𝜋)4
1

𝑞2 − 𝑚2
𝑖

1
(𝑝1 − 𝑞)2 − 𝑚2

𝜒

1
𝑞2 − 𝑚2

𝑗

(︂
4𝑚𝑞

𝑞2 + −4𝑝2 · 𝑞

𝑞4 /𝑞

)︂
𝑢(𝑝2),

𝑖ℳΔ
𝑖𝑗 = 𝐵𝑖𝑗 𝑢̄(𝑝2)

ˆ
𝑑4𝑞

(2𝜋)4
1

𝑞2 − 𝑚2
𝑖

1
𝑞2 − 𝑚2

𝑗

(︂
1
𝑞2 − 2𝑝2 · 𝑞

𝑞4

)︂
(2𝑚𝑞 + /𝑞) 𝑢(𝑝2). (5.7)

These amplitudes can be reduced to the Passarino–Veltmann integral basis by the standard
techniques.

Note that this approximation is required for the fact that an exact calculation would not
lead to results that could be matched to the effective Lagrangian in Eq. (3.24); specifically,
without using the expansion (5.6), the external momenta of the DM particle and the quark
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𝜒 𝜒

𝑔 𝑔

ℎ𝑖

Figure 5.8: Interaction of a DM particle and a gluon via a Higgs boson mediator and a quark
loop.

would appear as arguments of Passarino–Veltmann functions. Using the approximation, all
expressions for the box and triangle diagrams become proportional to either 𝑢̄(𝑝2) 𝑢(𝑝2) or
(𝑝1 · 𝑝2) 𝑢̄(𝑝2) /𝑝1 𝑢(𝑝2) and are otherwise momentum independent.

5.3 NLO Diagrams with External Gluons
The interaction of a DM particle 𝜒 with a gluon 𝑔 is only feasible through a Higgs boson
mediator and a quark loop. In the simplest case, the mediator Higgs boson can couple through
a quark triangle to a gluon. This is shown in Fig. 5.8. When summed over 𝑖 = 1, 2, this
diagram is proportional to the squared momentum transfer 𝑡 just as the tree-level amplitude
in Eq. (5.1) and therefore vanishes in the limit of vanishing momentum transfer.

In [17], also the higher-order diagrams in Fig. 5.9 are taken into account. The coupling
of a Higgs boson and a gluon through a quark triangle as in the first and second of these
diagrams can be matched to the coupling of the Higgs boson to heavy quarks 𝑄 = 𝑐, 𝑡, 𝑏.
This matching is presented in Sec. 5.3.1. However, by this matching only diagrams with
electroweak corrections to the Higgs boson propagator and the (“upper”) DM–Higgs boson
vertex can be taken into account; electroweak corrections to the (“lower”) quark–Higgs boson
vertex would obviously interfere with the quark triangle, which makes a matching to heavy
quarks non-trivial, since the loops do not factorize [37]. Thus, including these corrections to
the quark triangle would require a full two-loop calculation, which is beyond the scope of
this work. Then, for consistency, also the first and second diagram of the sum in Fig. 5.9
have not been taken into account for the results of this work. Taking into account only the
propagator and “upper” vertex corrections also comes with the issue that the arbitrarily
introduced field-strength renormalization factors of the Higgs boson fields do not cancel
completely anymore, which they should as known from Fig. 4.5. Moreover, without taking
into account the field-strength renormalization constants consistently, the KOSY scheme for
the renormalization of the mixing angle 𝛼 (see Sec. 4.4) would cause numerical instabilities for
degenerate Higgs masses 𝑚2 → 𝑚1 [60]. These effects will be further discussed in Chapter 6.

The third diagram in the sum of Fig. 5.9 represents the triangle and box diagrams with

𝜒 𝜒

𝑔 𝑔

=
𝜒 𝜒

𝑔 𝑔
+

𝜒 𝜒

𝑔 𝑔
+

𝜒 𝜒

𝑔 𝑔
.

Figure 5.9: Possible higher-order electroweak corrections to DM–gluon scattering. They are
given by propagator corrections, vertex corrections and a box diagrams.
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external gluons. This two-loop diagram can be reduced to an effective one-loop diagram in
the Fock–Schwinger gauge, as it will be derived in Sec. 5.3.2 (see this section also for the
explicit meaning of the blobs in this diagram). It is of the same order of perturbation theory
as the other diagrams in Fig. 5.9; its contribution to the cross section is negligible, as we will
discuss in Chapter 6.

5.3.1 Vertex and Propagator Correction Diagrams with External Gluons
The propagator correction blobs for diagrams with external quarks in Fig. 5.2 and for diagrams
with external gluons in Fig. 5.9 are identical. The same holds true for the vertex correction
blobs to the (“upper”) DM–Higgs boson vertex. These diagrams with external quarks and
external gluons only differ in the “lower” vertex, where the Higgs boson couples to a quark
or via a quark triangle to a gluon. It turns out that the effective coupling of a Higgs boson
to a gluon through a quark triangle can be matched to the coupling of a Higgs boson to a
heavy quark 𝑄 = 𝑐, 𝑏, 𝑡 [68].

This matching relies on a phenomenon called trace anomaly. Classically, the trace of the
energy–momentum tensor in QCD is given by [34]

Θ𝜇
𝜇 =

∑︁
𝑞

𝑚𝑞𝑞𝑞 , (5.8)

where 𝑞 is the quark field and 𝑚𝑞 the corresponding quark mass. Upon including quantum
corrections, however, this trace receives an additional contribution proportional to the 𝛽
function and the 𝛾𝑚 function of renormalization group theory [38, 68],

Θ𝜇
𝜇 =

∑︁
𝑞

𝑚𝑞(1 − 𝛾𝑚𝑞 )𝑞𝑞 + 𝛽𝑛(𝛼𝑠)
4𝛼𝑠

𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 . (5.9)

Here, 𝛼𝑠 is the strong coupling constant and the index 𝑛 of the 𝛽 function indicates the
number of quark flavors that are taken into account.

The nucleon matrix element of the trace of the energy–momentum tensor is equal to the
mass of the nucleon [69],1

𝑚𝑛 = ⟨𝑛|Θ𝜇
𝜇|𝑛⟩ . (5.10)

Under the assumption that approximately only the light quarks 𝑞 = 𝑢, 𝑑, 𝑠 contribute
significantly to the overall nucleon mass, using Eqs. (5.9) and (5.10) the nucleon mass can be
written as

𝑚𝑛 ≈
∑︁

𝑞=𝑢, 𝑑, 𝑠

⟨𝑛|𝑚𝑞(1 − 𝛾𝑚𝑞 )𝑞𝑞|𝑛⟩ + 𝛽3(𝛼𝑠)
4𝛼𝑠

⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 |𝑛⟩ . (5.11)

Consequently, the contribution of a heavy quark 𝑄 to the nucleon mass is approximately zero

1 This neat result depends on the normalization being chosen as ⟨𝑛|𝑛⟩ = (2𝜋)3𝛿(3)(0)𝐸/𝑚𝑛, where 𝐸 is the
total energy and 𝑚𝑛 is the mass of the nucleon.
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[68, 70], such that

𝑚𝑛 ≈
∑︁

𝑞=𝑢, 𝑑, 𝑠, 𝑄

⟨𝑛|𝑚𝑞(1 − 𝛾𝑚𝑞 )𝑞𝑞|𝑛⟩ + 𝛽4(𝛼𝑠)
4𝛼𝑠

⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 |𝑛⟩ (5.12)

for any 𝑄 = 𝑐, 𝑏, 𝑡. Subtracting Eq. (5.11) from (5.12) yields

0 ≈ ⟨𝑛|𝑚𝑄(1 − 𝛾𝑚𝑄)𝑄̄𝑄|𝑛⟩ + Δ𝛽(𝛼𝑠)
4𝛼𝑠

⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 |𝑛⟩

⇐⇒ ⟨𝑛|𝑚𝑄𝑄̄𝑄|𝑛⟩ ≈ − Δ𝛽(𝛼𝑠)
4𝛼𝑠(1 − 𝛾𝑚𝑄)⏟  ⏞  

=𝛼𝑠/(12𝜋)+𝒪(𝛼2
𝑠)

⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 |𝑛⟩ , (5.13)

where Δ𝛽 ≡ 𝛽4 − 𝛽3 = 𝛼2
𝑠/(3𝜋).2 It was also used that 𝛾𝑚 is of order 𝒪(𝛼𝑠).

Using this relation alongside with Eqs. (3.29) and (3.31), the contribution to the nucleon
coupling 𝛼𝑛 from the gluon term of the Lagrangian can be given as

𝛼𝑛 ⊃ ⟨𝑛|𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 |𝑛⟩ 𝛼𝑔
𝑆 = 𝐶𝑔

𝑆

2𝛼𝑠

𝜋
⟨𝑛|𝐺𝑎

𝜇𝜈𝐺𝜇𝜈
𝑎 |𝑛⟩ ≈ −24𝐶𝑔

𝑆 ⟨𝑛|𝑚𝑄𝑄̄𝑄|𝑛⟩ . (5.14)

If there was a term 𝐶𝑄
𝑆 𝑚𝑄𝜒2𝑄̄𝑄 in the Lagrangian, its contribution to the nucleon coupling

would be

𝛼𝑛 ⊃ ⟨𝑛|𝑄̄𝑄|𝑛⟩ 𝛼𝑄
𝑆 = 2𝐶𝑄

𝑆 ⟨𝑛|𝑚𝑄𝑄̄𝑄|𝑛⟩ , (5.15)

where Eqs. (3.28) and (3.30) were used. Thus, the gluon contribution can also be described
by such a heavy quark term in the Lagrangian, where the Wilson coefficients need to be
related by 2𝐶𝑄

𝑆 = −24𝐶𝑔
𝑆 . In practice this means that one can compute the Wilson coefficient

𝐶𝑄
𝑆 from diagrams with external heavy quarks and thereby also find the value for the gluon

Wilson coefficient as

𝐶𝑔
𝑆 = − 1

12𝐶𝑄
𝑆 , (5.16)

without computing any diagram with external gluons explicitly. 𝐶𝑔
𝑆 then enters the cross

section as described by Eq. (3.35).

5.3.2 Triangle and Box Diagrams with External Gluons
The third diagram in the sum in Fig. 5.9 represents the triangle and box diagrams with
external gluons. More explicitly, it represents the diagrams in Fig. 5.10. All non-redundant
combinations of ℎ𝑖 and ℎ𝑗 (𝑖, 𝑗 = 1, 2) have to be taken into account.

In principle, all quark flavors can appear in the quark loop in these diagrams. However,
since all of the diagrams contain two quark–Higgs vertices, each of which is proportional to
the quark mass, the contributions of all other quark flavors can be neglected in comparison to

2 Note that Δ𝛽 = 𝛽𝑛+1 − 𝛽𝑛 = 𝛼2
𝑠/(3𝜋) for any 𝑛.
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𝜒 𝜒

𝑔 𝑔

a)

=

𝜒 𝜒

𝑔 𝑔

𝑞 𝑞
+

𝜒 𝜒

𝑔 𝑔

+

𝜒 𝜒

𝑔 𝑔

𝜒 𝜒

ℎ𝑖 ℎ𝑗

b)
=

𝜒 𝜒

ℎ𝑖 ℎ𝑗

+
𝜒 𝜒

ℎ𝑖 ℎ𝑗

+
∑︁

𝑘=1, 2

𝜒 𝜒

ℎ𝑖 ℎ𝑗

ℎ𝑘

Figure 5.10: Triangle and box diagrams with external gluons. a) shows the meaning of the
lower blob, whereas in b) the meaning of the upper blob is presented.

the top quark. Therefore, only the case of the top quark loop is considered, which will allow
for significant simplifications due to approximations that are valid for large quark masses.

Following [37], in the first step the quark loop integral will be performed in the Fock–
Schwinger gauge (see Sec. 5.3.2.1). After constructing the loop amplitude, where the gluon
legs are described in terms of background field contributions to the full quark propagator (see
Secs. 5.3.2.2–5.3.2.4), the loop integral is computed using Feynman parameters in Sec. 5.3.2.5.
After arriving at this result, the approximation of a heavy quark mass will reduce the result of
the loop integral – which is so far a function of the second loop momentum 𝑞 – to a constant
effective coupling between two gluons and two Higgs bosons. The sum of the diagrams in
Fig 5.10a can then be given in terms of an effective coupling between two Higgs bosons and
two gluons as shown in Fig. 5.11 In this way, the top quark that foremost contributes to these
diagrams has been integrated out and the full two-loop computation has been simplified to
two separate one-loop computations.

5.3.2.1 The Fock–Schwinger Gauge
The general Fock–Schwinger gauge condition on a gluon field 𝐴𝑎

𝜇(𝑥) with Lorentz index 𝜇
and SU(3) index 𝑎 is given by [71]3

(𝑥𝜇 − 𝑥𝜇
0 ) 𝐴𝑎

𝜇(𝑥) = 0 , (5.17)

where 𝑥𝜇
0 serves as an arbitrary gauge parameter. In what follows, we will choose 𝑥𝜇

0 = 0 for
simplicity.

𝜒 𝜒

𝑔 𝑔

ℎ𝑖 ℎ𝑗

Figure 5.11: Box diagram with effective gluon Higgs coupling.

3 This whole section follows [71] quite tightly.
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The Fock–Schwinger gauge comes with the useful feature that the gluon field 𝐴𝑎
𝜇(𝑥) can

be expressed uniquely in terms of the field-strength tensor 𝐺𝑎
𝜇𝜈(𝑥). In order to derive this

relation explicitly, one may start off by differentiating Eq. (5.17),

0 = 𝜕𝜇 (𝑥𝜈𝐴𝑎
𝜈(𝑥)) = 𝐴𝑎

𝜇(𝑥) + 𝑥𝜈𝜕𝜇𝐴𝑎
𝜈(𝑥) = 𝐴𝑎

𝜇(𝑥) + 𝑥𝜈
(︀
𝐺𝑎

𝜇𝜈(𝑥) + 𝜕𝜈𝐴𝜇(𝑥)
)︀

. (5.18)

Note that the last step in Eq. (5.18) is valid because in the Fock–Schwinger gauge the third
term of the field strength tensor

𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝐴𝑎

𝜈 − 𝜕𝜈𝐴𝑎
𝜇 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴𝑐
𝜈 (5.19)

vanishes upon multiplication with 𝑥𝜈 . Substituting 𝑥 → 𝛼𝑥 yields

0 = 𝐴𝑎
𝜇(𝛼𝑥) + 𝑥𝜈𝜕𝜈𝐴𝜇(𝛼𝑥) + 𝛼𝑥𝜈𝐺𝑎

𝜇𝜈(𝛼𝑥) = 𝑑

𝑑𝛼
𝛼𝐴𝑎

𝜇(𝛼𝑥) + 𝛼𝑥𝜈𝐺𝑎
𝜇𝜈(𝛼𝑥) . (5.20)

Finally, integrating both sides from 𝛼 = 0 to 𝛼 = 1 leads to the sought-after relation

𝐴𝑎
𝜇(𝑥) = −𝑥𝜈

ˆ 1

0
𝑑𝛼 𝛼 𝐺𝑎

𝜇𝜈(𝛼𝑥) . (5.21)

It is possible to perform the integral over 𝛼 explicitly by writing 𝐺𝑎
𝜇𝜈(𝛼𝑥) as a Taylor series

around 𝑥 = 0,4

𝐴𝑎
𝜇(𝑥) = −𝑥𝜈

ˆ 1

0
𝑑𝛼 𝛼

∞∑︁
𝑛=0

1
𝑛!

(︂∏︀𝑛
𝑖=1

𝜕

𝜕𝑥𝜎𝑖

)︂
𝐺𝑎

𝜇𝜈(𝛼𝑥)
⃒⃒⃒⃒
𝑥=0

(
∏︀𝑛

𝑖=1 𝑥𝜎𝑖)

= −𝑥𝜈

ˆ 1

0
𝑑𝛼 𝛼

∞∑︁
𝑛=0

𝛼𝑛

𝑛!

(︂∏︀𝑛
𝑖=1

𝜕

𝜕(𝛼𝑥)𝜎𝑖

)︂
𝐺𝑎

𝜇𝜈(𝛼𝑥)
⃒⃒⃒⃒
𝑥=0

(
∏︀𝑛

𝑖=1 𝑥𝜎𝑖)

= −𝑥𝜈
∞∑︁

𝑛=0

1
𝑛!

ˆ 1

0
𝑑𝛼 𝛼𝑛+1

(︂∏︀𝑛
𝑖=1

𝜕

𝜕𝑥𝜎𝑖

)︂
𝐺𝑎

𝜇𝜈(𝑥)
⃒⃒⃒⃒
𝑥=0

(
∏︀𝑛

𝑖=1 𝑥𝜎𝑖)

= −𝑥𝜈
∞∑︁

𝑛=0

1
𝑛!

1
𝑛 + 2 (

∏︀𝑛
𝑖=1 𝜕𝜎𝑖) 𝐺𝑎

𝜇𝜈(𝑥)
⃒⃒
𝑥=0 (

∏︀𝑛
𝑖=1 𝑥𝜎𝑖) .

(5.22)

5.3.2.2 The Idea of the Background Field Method
Before moving on with computing the quark loop, let us quickly introduce the basic ideas of
the background field method. A more profound introduction is given in [35].

Pictorially, the QED Lagrangian can be given as

L = + + . (5.23)

If one is interested in processes with external photons only in which case the electrons
solely appear as internal loop particles, it is possible to compute an effective QED Lagrangian

4 In Eq. (5.22), the convention Π0
𝑖=1(anything) = 1 is used.
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for these processes that is of the form [35]5

Leff = + + + + · · · (5.24)

= −1
4𝐹𝜇𝜈(𝑥)𝐹 𝜇𝜈(𝑥) + 𝑎𝜇𝐴𝜇(𝑥) + 𝑏𝜇𝜈𝐴𝜇(𝑥)𝐴𝜈(𝑥) + 𝑐𝜇𝜈𝜎𝐴𝜇(𝑥)𝐴𝜈(𝑥)𝐴𝜎(𝑥) + · · · .

This effective Lagrangian only depends on photon fields 𝐴𝜇(𝑥), whereas the fermion fields
are integrated out. That is, their effective contribution through the loops is absorbed into the
coefficients 𝑎𝜇, 𝑏𝜇𝜈 , 𝑐𝜇𝜈𝜎 etc.

For example, the prefactor 𝑏𝜇𝜈 is computed by6

𝑏𝜇𝜈𝐴𝜇(0)𝐴𝜈(0) =

= (𝑖𝑒)2
ˆ

𝑑4𝑧 𝑑4𝑧′ Tr 𝑆0(𝑧′ − 𝑧) /𝐴(𝑧)𝑆0(𝑧 − 𝑧′) /𝐴(𝑧′) ,

(5.25)

where 𝑆0(𝑥 − 𝑦) is the fermion Feynman propagator in position space. Here, the propagator
with a cross marks the corresponding field as a background field (not to be confused with a
counterterm) that comes with the Feynman rule [34]

= 𝑖𝑒

ˆ
𝑑4𝑧 /𝐴(𝑧) (5.26)

in position space.
In the presence of this background field, the full fermion propagator, describing a fermion

travelling from 𝑥 to 𝑦, is given by [34]

𝑆(𝑥, 𝑦) = 𝑥 𝑦 + 𝑥 𝑦 + 𝑥 𝑦 + · · ·

= 𝑆0(𝑥 − 𝑦) + 𝑖𝑒

ˆ
𝑑4𝑧 𝑆0(𝑥 − 𝑧) /𝐴(𝑧) 𝑆0(𝑧 − 𝑦) (5.27)

+ (𝑖𝑒)2
ˆ

𝑑4𝑧 𝑑4𝑧′ 𝑆0(𝑥 − 𝑧) /𝐴(𝑧) 𝑆0(𝑧 − 𝑧′) /𝐴(𝑧′) 𝑆0(𝑧′ − 𝑦) + · · · .

5 In principle, Leff also includes a fermion loop with no external photons. This diagram is equivalent to a
constant and constant terms in Lagrangians have no effect on the computation of scattering amplitudes.

6 Note that the integral over 𝑑4𝑧 𝑑4𝑧′ needs to be proportional to 𝐴𝜇(0)𝐴𝜈(0), since there is nothing but 𝐴𝜇

to carry the Lorentz indices and there is no length scale that could appear as an argument of 𝐴𝜇. Still, in
the effective Lagrangian (5.24), the fields have all the same spatial argument 𝑥.
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5.3.2.3 The Full Quark Propagator in a Gluon Background Field
The object of interest is a quark loop with two Higgs bosons and two gluons attached to it.
Ignoring the gluons for the moment, the quark loop with two Higgs bosons only is given by
Feynman rules as

𝑥 𝑦
𝑥0 𝑦0

ℎ𝑖 ℎ𝑗
= −
ˆ

𝑑4𝑥 𝑑4𝑦 𝐻0
𝑖 (𝑥0−𝑥) Tr 𝑎𝑖 𝑆0(𝑥−𝑦) 𝑎𝑗 𝑆0(𝑦−𝑥)𝐻0

𝑗 (𝑦−𝑦0) (5.28)

in position space. Here, 𝐻0
𝑖 is the Feynman propagator of the Higgs boson field ℎ𝑖, 𝑆0 is

the Feynman propagator of the quark and 𝑎𝑖 is the coupling factor of the ℎ𝑖𝑞𝑞 coupling.7 In
position space, this amplitude cannot readily be given in its amputated form, as the external
propagator depends on integration variables. After performing a Fourier transformation
on 𝐻0

𝑖 and choosing the coordinate system such that 𝑦 = 0 it is found that the amputated
amplitude (with the Higgs propagators dropped) reads [71]

𝑖Π̂𝑖𝑗(𝑞) ≡ ℎ𝑖 ℎ𝑗

𝑞 𝑞
= −𝑎𝑖𝑎𝑗

ˆ
𝑑4𝑥 𝑒𝑖𝑞·𝑥 Tr 𝑆0(𝑥 − 0) 𝑆0(0 − 𝑥) . (5.30)

To include (all possible numbers of) gluons that are attached to the loop in addition to the
Higgs boson simply replace 𝑆0(𝑥 − 𝑦) by 𝑆(𝑥, 𝑦) from Eq. (5.27). This will change Π̂𝑖𝑗(𝑞) to,
say, Π𝑖𝑗(𝑞). Defining the Fourier transformed propagators

𝑆(𝑝) ≡
ˆ

𝑑4𝑥 𝑒𝑖𝑝·𝑥 𝑆(𝑥, 0) , 𝑆(𝑝) ≡
ˆ

𝑑4𝑥 𝑒−𝑖𝑝·𝑥 𝑆(0, 𝑥) , (5.31)

and using the inverse versions of these relations to turn 𝑆(𝑥,𝑦) into momentum space yields

𝑖Π𝑖𝑗(𝑞) = −𝑎𝑖𝑎𝑗

ˆ
𝑑4𝑝

(2𝜋)4 Tr 𝑆(𝑝)𝑆(𝑝 − 𝑞) . (5.32)

Plugging the expansion (5.27) into Eq. (5.31) (and replacing 𝑒 → 𝑔𝑠, since we are now

7 For explicitness: In the DCxSM, the (Yukawa) couplings 𝑎𝑖 of the Higgs mass eigenstates ℎ𝑖 with a quark
𝑞 are given by

𝑎1 = −𝑖
𝑚𝑞 cos 𝛼

𝑣
, 𝑎2 = 𝑖

𝑚𝑞 sin 𝛼

𝑣
, (5.29)

where 𝑚𝑞 is the quark mass, 𝛼 the Higgs mass mixing angle and 𝑣 the VEV of the Higgs field 𝐻.
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concerned about gluons instead of photons) yields8

𝑆(𝑝) = 𝑆0(𝑝) + 𝑖𝑔𝑠

ˆ
𝑑4𝑘

(2𝑝𝑖)4 𝑆0(𝑝) /𝐴(𝑘)𝑆0(𝑝 − 𝑘)

+ (𝑖𝑔𝑠)2
ˆ

𝑑4𝑘1
(2𝜋)4

𝑑4𝑘2
(2𝜋)4 𝑆0(𝑝) /𝐴(𝑘1)𝑆0(𝑝 − 𝑘1) /𝐴(𝑘2)𝑆0(𝑝 − 𝑘1 − 𝑘2) ,

𝑆(𝑝) = 𝑆0(𝑝) + 𝑖𝑔𝑠

ˆ
𝑑4𝑘

(2𝑝𝑖)4 𝑆0(𝑝 + 𝑘) /𝐴(𝑘)𝑆0(𝑝)

+ (𝑖𝑔𝑠)2
ˆ

𝑑4𝑘1
(2𝜋)4

𝑑4𝑘2
(2𝜋)4 𝑆0(𝑝 + 𝑘1 + 𝑘2) /𝐴(𝑘2)𝑆0(𝑝 + 𝑘1) /𝐴(𝑘2)𝑆0(𝑝) ,

(5.34)

where 𝑆0(𝑝) = 𝑖/(/𝑝 − 𝑚). In these expressions also the Fourier transform of the gluon field
𝐴𝜇(𝑥) = 𝑡𝑎𝐴𝑎

𝜇(𝑥) appears, with 𝑡𝑎 being the generators of SU(3). Using the expansion (5.22),
it can be given as

𝐴𝜇(𝑘) =
ˆ

𝑑4𝑥 𝑒𝑖𝑘·𝑥𝐴𝜇(𝑥)

= −
∞∑︁

𝑛=0

1
𝑛!

1
𝑛 + 2 (

∏︀𝑛
𝑖=1 𝜕𝜎𝑖) 𝐺𝜇𝜈(𝑥)|𝑥=0

ˆ
𝑑4𝑥 𝑒𝑖𝑘·𝑥 𝑥𝜈 (

∏︀𝑛
𝑖=1 𝑥𝜎𝑖) (5.35)

= −
∞∑︁

𝑛=0

1
𝑛!

1
𝑛 + 2 (

∏︀𝑛
𝑖=1 𝜕𝜎𝑖) 𝐺𝜇𝜈(𝑥)|𝑥=0 (−𝑖) 𝜕

𝜕𝑘𝜈

(︂
(−𝑖)𝑛∏︀𝑛

𝑖=1
𝜕

𝜕𝑘𝜎𝑖

)︂ˆ
𝑑4𝑥 𝑒𝑖𝑘·𝑥⏟  ⏞  

=(2𝜋)4𝛿(𝑘)

,

where 𝐺𝜇𝜈(𝑥) = 𝑡𝑎𝐺𝑎
𝜇𝜈(𝑥).

5.3.2.4 Constructing the Loop Amplitude
The overall structure of both propagators 𝑆(𝑝) and 𝑆(𝑝) from Eq. (5.34) reads 𝑆0 + 𝑆0𝐴𝑆0 +
𝑆0𝐴𝑆0𝐴𝑆0 + · · · . In the loop amplitude (5.32), the combination 𝑆(𝑝) 𝑆(𝑝 − 𝑞) appears, which
then is of the structure

𝑆𝑆 = (𝑆0 + 𝑆0𝐴𝑆0 + 𝑆0𝐴𝑆0𝐴𝑆0 + · · · )2

= 𝑆0𝑆0𝐴𝑆0𝐴𝑆0 + 𝑆0𝐴𝑆0𝑆0𝐴𝑆0 + 𝑆0𝐴𝑆0𝐴𝑆0𝑆0 + (irrelevant) .
(5.36)

8 For example, for the derivation of the second term of 𝑆(𝑝) consider
ˆ

𝑑4𝑥 𝑒−𝑖𝑝·𝑥
ˆ

𝑑4𝑧 𝑎(𝑥 − 𝑧) 𝑏(𝑧) 𝑐(𝑧)

=
ˆ

𝑑4𝑥 𝑑4𝑧 𝑒𝑖𝑝·𝑥
ˆ

𝑑4𝑘1

(2𝜋)4
𝑑4𝑘2

(2𝜋)4
𝑑4𝑘3

(2𝜋)4 𝑒−𝑖𝑘1·𝑥𝑒−𝑖(𝑘1−𝑘2+𝑘3)·𝑧 𝑎(𝑘1)𝑏(𝑘2)𝑐(𝑘3)

=
ˆ

𝑑4𝑥

ˆ
𝑑4𝑘2

(2𝜋)4
𝑑4𝑘3

(2𝜋)4 𝑒−𝑖(𝑘2+𝑘3−𝑝)·𝑥 𝑎(𝑘2 + 𝑘3) 𝑏(𝑘2)𝑐(𝑘3)

=
ˆ

𝑑4𝑘

(2𝜋)4 𝑎(𝑝)𝑏(𝑘) 𝑐(𝑝 − 𝑘) .

(5.33)

The other terms are derived analogously.
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Since the object of interest in this work is a loop with exactly two external gluons, all terms
with a number of gluon fields 𝐴 other than two are irrelevant. Filling in the details, the
amplitude reads

𝑖Π𝑖𝑗(𝑞) = −(𝑖𝑔𝑠)2𝑎𝑖𝑎𝑗

ˆ
𝑑4𝑝

(2𝜋)4
𝑑4𝑘1
(2𝜋)4

𝑑4𝑘2
(2𝜋)4 (5.37)

Tr
(︀
𝑆0(𝑝) 𝑆0(𝑝 − 𝑞 + 𝑘1 + 𝑘2) /𝐴(𝑘2) 𝑆0(𝑝 − 𝑞 + 𝑘1) /𝐴(𝑘1) 𝑆0(𝑝 − 𝑞)
+ 𝑆0(𝑝) /𝐴(𝑘1) 𝑆0(𝑝 − 𝑘2) 𝑆0(𝑝 − 𝑞 + 𝑘1) /𝐴(𝑘2) 𝑆0(𝑝 − 𝑞)
+ 𝑆0(𝑝) /𝐴(𝑘1) 𝑆0(𝑝 − 𝑘1) /𝐴(𝑘2) 𝑆0(𝑝 − 𝑘1 − 𝑘2) 𝑆0(𝑝 − 𝑞)

)︀
+ (irrelevant) .

Now, the expansion (5.35) can be plugged in. Only the first term 𝑛 = 0 is required. Using
𝐺𝜇𝜈(0) = 𝐺𝑎

𝜇𝜈(0)𝑡𝑎 and Tr 𝑡𝑎𝑡𝑏 = 𝛿𝑎𝑏/2, and dropping the irrelevant terms, yields9

𝑖Π𝑖𝑗(𝑞) = − 𝑖2(𝑖𝑔𝑠)2

8 𝑎𝑖𝑎𝑗𝐺𝑎
𝜇𝜈(0)𝐺𝑎

𝜌𝜎(0)
ˆ

𝑑4𝑝

(2𝜋)4
𝜕

𝜕𝑘1𝜈

𝜕

𝜕𝑘2𝜎
(5.39)

Tr
(︀
𝑆0(𝑝) 𝑆0(𝑝 − 𝑞 + 𝑘1 + 𝑘2) 𝛾𝜇 𝑆0(𝑝 − 𝑞 + 𝑘2) 𝛾𝜌 𝑆0(𝑝 − 𝑞)
+ 𝑆0(𝑝) 𝛾𝜇 𝑆0(𝑝 − 𝑘1) 𝑆0(𝑝 − 𝑞 + 𝑘2) 𝛾𝜌 𝑆0(𝑝 − 𝑞)
+ 𝑆0(𝑝) 𝛾𝜇 𝑆0(𝑝 − 𝑘1) 𝛾𝜌 𝑆0(𝑝 − 𝑘1 − 𝑘2) 𝑆0(𝑝 − 𝑞)

)︀⃒⃒
𝑘1,𝑘2=0 .

In the first of the three terms, the names of the momenta 𝑘1 ↔ 𝑘2 have been swapped to
enable a compact notation.

5.3.2.5 Computing the Loop Integral
One may replace [37]

𝐺𝑎
𝜇𝜈𝐺𝑎

𝜌𝜎 → 1
12𝐺𝑎

𝜅𝜂𝐺𝑎𝜅𝜂 (𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌) (5.40)

if one is only interested in spin-independent interactions. Furthermore, one can now plug
in the explicit form of the Feynman propagators 𝑆0, perform the derivatives with respect
to 𝑘1 and 𝑘2 and compute the Dirac trace. Finally, by a shift of the integration variable
𝑝 → −𝑝 + 𝑞 in the first term in the trace of Eq. (5.39), it can be shown that the first and the

9 Also the 𝛿 function identity
ˆ

𝑑4𝑥 𝑓(𝑥) 𝜕𝜇𝛿(𝑥) = −𝜕𝜇𝑓(𝑥)|𝑥=0 , (5.38)

which is easily derived using integration by parts, is used in this step.
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last term contribute equally. Specifically, the result is

𝑖Π𝑖𝑗(𝑞) = 𝑖2(𝑖𝑔𝑠)2

2 𝑎𝑖𝑎𝑗𝐺𝑎
𝜇𝜈(0)𝐺𝑎𝜇𝜈(0) (5.41)

·
ˆ

𝑑4𝑝

(2𝜋)4

(︃
2 ·

2𝑚2 (︀2𝑝2 − 𝑝 · 𝑞
)︀

(𝑝2 − 𝑚2)4((𝑝 − 𝑞)2 − 𝑚2) + 2𝑚2 + 𝑝 · (𝑝 − 𝑞)
(𝑝2 − 𝑚2)2((𝑝 − 𝑞)2 − 𝑚2)2

)︃
,

where 𝑚 is the mass of the quark in the loop.
This loop integral can now be evaluated by the usual procedure. The identity [34]

𝑛∏︁
𝑖=1

1
𝐴𝑎𝑖

𝑖

= Γ (
∑︀𝑛

𝑖=1 𝑎𝑖)∏︀𝑛
𝑖=1 Γ(𝑎𝑖)

ˆ 1

0
(
∏︀𝑛

𝑖=1 𝑑𝑥𝑖)
𝛿 (1 −

∑︀𝑛
𝑖=1 𝑥𝑖)

∏︀𝑛
𝑖=1 𝑥𝑎𝑖−1

𝑖

(
∑︀𝑛

𝑖=1 𝐴𝑖𝑥𝑖)
∑︀𝑛

𝑖=1 𝑎𝑖
(5.42)

is used to introduce Feynman parameters 𝑥𝑖. By a shift 𝑝 → 𝑝 + 𝑞𝑥, the denominators can
then be brought into the form (𝑙2 − Δ)𝑛, where

Δ ≡ 𝑚2 − 𝑞2𝑥(1 − 𝑥) , (5.43)

such that the integral formulas in [34] can be applied:

𝑖Π𝑖𝑗(𝑞) = 3𝑔2
𝑠𝑎𝑖𝑎𝑗𝐺𝑎

𝜇𝜈(0)𝐺𝑎𝜇𝜈(0)
ˆ 1

0
𝑑𝑥

ˆ
𝑑4𝑝

(2𝜋)4

(︂
8
3𝑚2(1 − 𝑥)3 2𝑝2 − 𝑝 · 𝑞

((𝑝 − 𝑞𝑥)2 − Δ)5

+ 𝑥(1 − 𝑥) 2𝑚2 + 𝑝 · (𝑝 − 𝑞)
((𝑝 − 𝑞𝑥)2 − Δ)4

)︂
(5.44)

= 𝑖𝑔2
𝑠

96𝜋2 𝑎𝑖𝑎𝑗𝐺𝑎
𝜇𝜈(0)𝐺𝑎𝜇𝜈(0)

ˆ 1

0
𝑑𝑥

4𝑚2(1 − 𝑥)3(2𝑚2 − 𝑞2𝑥) + 3𝑞2𝑥2(1 − 𝑥)2Δ
Δ3 .

It was used that
´

𝑑4𝑝 𝑝𝜇𝑓(𝑝2) = 0 for any function 𝑓 by symmetry.
Recall that 𝑚 is the quark mass and that only the top quark is considered, hence 𝑚 = 𝑚𝑡.

𝑞 is the loop momentum of the second loop of the diagrams in Fig. 5.10a as well as the
momentum of the Higgs propagators. Thus, as in Sec. 5.2.2, the main contribution to the
integral of the second loop comes from regions where 𝑞2 is close to the squared Higgs masses
𝑚2

1 and 𝑚2
2. Assuming 𝑚1 ≪ 𝑚𝑡 and 𝑚2 ≪ 𝑚𝑡 therefore yields 𝑞2 ≪ 𝑚2

𝑡 , which makes the 𝑞
dependence drop out completely,

𝑖Π𝑖𝑗 ≈ 𝑖𝑔2
𝑠

48𝜋2𝑚2
𝑡

𝑎𝑖𝑎𝑗 𝐺𝑎
𝜇𝜈(0) 𝐺𝑎𝜇𝜈(0) . (5.45)

The validity of this approximation is discussed and compared to the full two-loop result in
[37]; for large Higgs masses, the approximation over-estimates the full two-loop result for the
contribution to the Wilson 𝐶𝑔

𝑆 . We will discuss the contribution of these box diagrams with
external gluons to the cross section in Chapter 6.

According to Eqs. (5.24) and (5.25), this expression for 𝑖Π𝑖𝑗 can – after dropping 𝐺𝑎
𝜇𝜈(0)𝐺𝑎𝜇𝜈(0)

– be plugged in as a vertex factor for the effective gluon–gluon–Higgs–Higgs vertex in Fig. 5.11.
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In other words, the Feynman rule

ℎ𝑖 ℎ𝑗

𝑔 𝑔

≈ 𝑖𝑔2
𝑠

48𝜋2𝑚2
𝑡

𝑎𝑖𝑎𝑗 (5.46)

can be adopted. This Feynman rule corresponds to a term

L ⊃ 1
2

𝑔2
𝑠

48𝜋2𝑚2
𝑡

𝑎𝑖𝑎𝑗 ℎ𝑖ℎ𝑗𝐺𝑎
𝜇𝜈 𝐺𝑎𝜇𝜈 (5.47)

in the effective Lagrangian [37].
Using this Feynman rule, the box diagrams with external gluons in Fig. 5.10 are thereby

reduced to a 1-loop diagram that can be computed by the standard procedure.

5.4 Matching the Amplitude to the Effective Operators
Regarding their dependence on external momenta, the mathematical expressions of all
the diagrams with external quarks have only two types of terms that contribute to spin-
independent scattering: Terms proportional to 𝑢̄(𝑝2) 𝑢(𝑝2) (and otherwise independent
of momenta) and terms proportional to (𝑝1 · 𝑝2) /𝑝1 𝑢̄(𝑝2) 𝑢(𝑝2), where 𝑝1 is the DM four-
momentum and 𝑝2 the quark four-momentum. Thereby, the spin-independent part of the
expression of any diagram with external quarks that was considered here can be brought into
the form

𝑖ℳ = 𝑖
(︁

𝐴 𝑢̄(𝑝2)𝑢(𝑝2) + 𝐵 (𝑝1 · 𝑝2) 𝑢̄(𝑝2)/𝑝1𝑢(𝑝2)
)︁

(5.48)

with some momentum-independent coefficients 𝐴 and 𝐵.
The effective Lagrangian that would produce such an amplitude reads

Leff = 1
2𝐴𝜒2𝑞𝑞 + 1

2𝐵 (𝜒 𝑖𝜕𝜇 𝑖𝜕𝜈 𝜒) (𝑞 𝑖𝜕𝜇𝛾𝜈 𝑞) . (5.49)

Note that it immediately follows from the definition of 𝒪𝑞
𝜇𝜈 in Eq. (3.27) that [37]

𝑞 𝑖𝜕𝜇𝛾𝜈 𝑞 = 𝒪𝑞
𝜇𝜈 + 𝑖𝑞

(︂
𝜕𝜇𝛾𝜈 − 𝜕𝜈𝛾𝜇

2 + 1
4𝑔𝜇𝜈 /𝜕

)︂
𝑞 . (5.50)

Plugging this expression into Eq. (5.49) yields

Leff =
(︂

1
2𝑚𝑞

𝐴 + 1
8𝑚2

𝜒𝐵

)︂
𝑚𝑞𝜒2𝑞𝑞 + 1

2𝐵 (𝜒 𝑖𝜕𝜇 𝑖𝜕𝜈 𝜒) 𝒪𝑞
𝜇𝜈 . (5.51)

Note that 𝜕𝜇𝛾𝜈 − 𝜕𝜈𝛾𝜇 is antisymmetric in 𝜇 and 𝜈 whereas 𝜒 𝑖𝜕𝜇 𝑖𝜕𝜈𝜒 is symmetric. Hence,
this term does not contribute. Furthermore, the Dirac equation /𝜕𝑞 = 𝑚𝑞𝑞 was employed.

By comparing this expression with the definition of the Wilson coefficients in Eq. (3.24),
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the Wilson coefficients can be related to the coefficients 𝐴 and 𝐵 as follows:

𝐶𝑞
𝑆 = 1

2𝑚𝑞
𝐴 +

𝑚2
𝜒

8 𝐵 , (5.52)

𝐶𝑞
𝑇 =

𝑚2
𝜒

2 𝐵 . (5.53)

By the procedure presented in Sec. 5.3.2, all triangle and box diagrams with external
gluons are proportional to 𝐺𝑎

𝜇𝜈𝐺𝑎𝜇𝜈 and independent of momenta. Thereby, they can be
matched directly to the gluon term of Eq. (3.26) in the effective Lagrangian (3.24) in order
to determine the Wilson coefficient 𝐶𝑔

𝑆 .





CHAPTER 6
Numerical Analysis

After the analytical calculation of the cross section according to Eq. (3.35), numerical results
are obtained by fixing the values of all input parameters. The values of the SM parameters
used in this work are given in Sec. 6.1.

There are two distinct types of numerical analyses performed in this chapter. The first one
is based on a parameter scan, which produces parameter points that obey current theoretical
and experimental constraints. In Sec. 6.2, this analysis is described and its results are
presented.

In Sec. 6.3, an individual valid parameter point is selected and its behavior upon variation
of different parameters is examined.

Note that the approach for computing the cross section of Direct Detection in this work
takes into account all the diagrams of Fig. 5.2, but only the last diagram of Fig. 5.9. For a
detailed discussion about the choice of diagrams and the applied approximations see Chapter 5
as well as Sec. 6.3.

6.1 Numerical Values of the Parameters
For the SM parameters we take the following values [11, 72],

𝑚𝑢 = 0.19 GeV , 𝑚𝑐 = 1.4 GeV , 𝑚𝑡 = 172.5 GeV ,

𝑚𝑑 = 0.19 GeV , 𝑚𝑠 = 0.19 GeV , 𝑚𝑏 = 4.75 GeV ,

𝑚𝑒 = 0.511 MeV , 𝑚𝜇 = 105.658 MeV , 𝑚𝜏 = 1.777 GeV ,

𝑚𝑊 = 80.398 GeV , 𝑣 = 246 GeV ,

𝑚𝑍 = 91.188 GeV .

(6.1)

Note that thereby also the weak coupling and the Weinberg angle are fixed as

𝑔 = 2𝑚𝑊 /𝑣 = 0.653 , sin 𝜃𝑊 = 𝑚𝑊 /𝑚𝑍 = 0.472 . (6.2)

Recall that 𝑚1 and 𝑚2 are the masses of the lighter and heavier Higgs boson, respectively.
In this chapter, we denote them as 𝑚ℎ for the mass of the SM-like Higgs boson and as 𝑚𝜑

for the mass of the non-SM-like Higgs boson. For the SM-like Higgs mass the value

𝑚ℎ = 125.09 GeV (6.3)

is used [19].
Furthermore, the computation of the cross section according to Eq. (3.35) requires numerical

values for the mass of a nucleon as well as for the form factors and second moments. The

67
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analysis of the subsequent sections is done for the proton 𝑝, i. e. it holds

𝜎 ≡ 𝜎𝑝 , (6.4)

where 𝜎𝑝 is given by Eq. (3.35). The proton mass is taken to be [11]

𝑚𝑝 = 0.938 GeV . (6.5)

The values for the form factors 𝑓𝑛
𝑞 and 𝑓𝑛

𝑔 as well as for the second moments 𝑞𝑛(2) and 𝑞𝑛(2)
are taken from [37],

𝑓𝑝
𝑢 = 0.015 13 , 𝑓𝑝

𝑑 = 0.0191 , 𝑓𝑝
𝑠 = 0.0447 ,

𝑓𝑝
𝑔 = 0.921 07 ,

𝑢𝑝(2) = 0.22 , 𝑐𝑝(2) = 0.019 ,

𝑢̄𝑝(2) = 0.034 , 𝑐𝑝(2) = 0.019 ,

𝑑𝑝(2) = 0.11 , 𝑠𝑝(2) = 0.026 , 𝑏𝑝(2) = 0.012 ,

𝑑𝑝(2) = 0.036 , 𝑠𝑝(2) = 0.026 , 𝑏̄𝑝(2) = 0.012 .

(6.6)

If not stated otherwise, all results are given in the Feynman gauge 𝜉 = 1, where 𝜉 is the
gauge parameter of all gauge bosons. The gauge dependence will be examined in Sec. 6.3.

6.2 Parameter Scan
Having fixed all SM parameters according to Sec. 6.1, the values for the remaining four
parameters given in Eq. (2.18) are produced during a parameter scan, which is automatized
by the code ScannerS-2 [73–76]. The scan ranges were chosen as follows,

𝑚𝜑 ∈ [ 30 GeV, 1000 GeV ] ,

𝑚𝜒 ∈ [ 30 GeV, 1000 GeV ] ,

𝑣𝑆 ∈ [ 1 GeV, 1000 GeV ] ,

𝛼 ∈ [ −𝜋/2, 𝜋/2 ] .

(6.7)

The parameter scan of ScannerS-2 takes into account current bounds for the non-SM-like
Higgs boson from LEP, Tevatron and the LHC as well as constraints on the DM candidate,
using interfaces to HiggsBounds-5 [77–79], HiggsSignals-2 [80] and micrOMEGAs [51].
In addition, micrOMEGAs computes the relic density, as introduced in Sec. 3.6, for every
parameter point.

In Fig. 6.1, the parameter points of the scan are added to the plot from Fig. 3.3, which
shows the limits of several liquid xenon based Direct Detection experiments as well as the
neutrino floor. Note that the effective cross section, as defined in Eq. (3.39), is plotted. There
are parameter points above the neutrino floor (which is plotted in gray), corresponding to a
wide range of mass values for the color-coded non-SM Higgs mass 𝑚𝜑. The majority of them
lies within a relatively narrow DM mass range of about 𝑚ℎ/2 < 𝑚𝜒 < 80 GeV. We found
only points below the prospective Xenon10T limit, but some lie above the prospective limit
of the upcoming Darwin experiment [81].
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Figure 6.1: This plot shows the parameter sample together with the limits of liquid xenon
based experiments from Fig. 3.3. The corresponding values of the effective spin-independent cross
section 𝑓𝜒𝜒 · 𝜎 (see Sec. 3.6) are plotted against the DM mass 𝑚𝜒. The color of the parameter
points illustrates the mass of the non-SM-like Higgs boson 𝑚𝜑. The neutrino floor is plotted in
gray. The data for the limits and the neutrino floor was taken from [40–46], using the tool [47].

In Fig. 6.2, the cross section of all parameter points is plotted against the four non-SM
parameters of the DCxSM. The plot in Fig. 6.2a is similar to Fig. 6.1, but with the cross
section 𝜎 instead of the effective cross section 𝑓𝜒𝜒 · 𝜎 and with the axis bounds chosen in
a way that all generated points are shown. For higher cross sections of about 10−49 cm2

there is an edge at 𝑚𝜒 = 𝑚ℎ/2. Note that the Higgs boson can decay into two DM particles
if 𝑚𝜒 < 𝑚ℎ/2. The Higgs to invisible searches at the LHC impose a constraint on the
corresponding coupling of the DM–Higgs vertex. Since 𝜎 is proportional to this coupling,
these constraints can be translated to constraints on 𝜎, which forbids parameter points with
𝑚𝜒 < 𝑚ℎ/2 for cross sections of a certain value (of about 10−50 cm2 according to Fig. 6.2a)
and above. For lower cross sections, DM masses of about 55 GeV and below are strongly
constrained, presumably by astronomical observations. Moreover, from the color coding of
Fig. 6.2a one can infer an anticorrelation between the cross section 𝜎 and the non-SM-like
VEV 𝑣S.

In Fig. 6.2b, only the parameter points that lie above the neutrino floor in Fig. 6.1 are
plotted in color. By comparing the Figs. 6.2a and b with Fig. 6.1 it is obvious that it
considerably depends on the value of the relic density factor 𝑓𝜒𝜒 which points lie above the
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Figure 6.2: The cross section plotted against 𝑚𝜒 (a, b), 𝑚𝜑 (c, d), 𝑣S (e, f) and 𝛼 (g, h). On the
left-hand side, all about 260 000 parameter points of the parameter scan fulfilling the theoretical
and experimental constraints are plotted; the color illustrates the size of an additional parameter.
On the right-hand side, only the parameter points that appear above the neutrino floor in Fig. 6.1
are plotted in color and all remaining parameter points in gray.
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neutrino floor and which ones do not.
In Fig. 6.2c, the parameter points are plotted against the mass of the non-SM-like Higgs

boson 𝑚𝜑. For 𝑚𝜑 < 𝑚ℎ/2, there are only isolated points since the decay of a SM-like Higgs
boson into two non-SM-like Higgs bosons is strongly constrained by collider experiments.
For 𝑚𝜑 < 𝑚ℎ, only points with 𝛼 ≈ ±𝜋/2 are found: The inverted mass hierarchy with
additional light neutral Higgs bosons is only possible with singlet-like light Higgs bosons.
Furthermore, there is a dip at 𝑚𝜑 = 𝑚ℎ. It is already apparent in the tree level amplitude in
Eq. (5.1), which is proportional to 𝑚2

ℎ − 𝑚2
𝜑 (for finite 𝑡). This dip is also observed in the

Vector Dark Matter Model [39].
In Fig. 6.2d, i. e. after dropping all points below the neutrino floor, there is a single

parameter point left over for 𝑚𝜑 < 𝑚ℎ, while most remaining points correspond to a wide
span of rather large masses 𝑚𝜑.

The behavior of the parameter points w. r. t. 𝑣S is examined in Fig. 6.2e. As it can already
be seen in Fig. 6.2a, the large cross sections are strongly constrained for large values of 𝑣S. It
can also be inferred from Fig. 6.2c that there is a correlation between 𝑚𝜑 and 𝑣S.

Finally, in Fig. 6.2g, the parameter points are plotted against the Higgs mixing angle 𝛼.
It follows from Eq. (2.12) and (2.13) that the mixing of the gauge eigenstates 𝜑H and 𝜑S is
maximal for 𝛼 = ±𝜋/4, where basically no points appear in Fig. 6.2d. It was shown in [76]
that large singlet admixtures to the SM-like Higgs boson are disfavored by the experimental
constraints, which is also applicable to the DCxSM. For 𝛼 = ±𝜋/2, the gauge eigenstate of
the SM-like Higgs boson 𝜑H is associated with the heavier Higgs mass 𝑚2, such that 𝑚𝜑 must
be smaller than 𝑚ℎ. Therefore, the points in this region show up in a dark hue. At 𝛼 = 0
the mixing of the Higgs gauge eigenstates vanishes and so does the mixing of the SM-like
Higgs doublet 𝐻 and the non-SM-like singlet 𝑆 (see Eq. (2.1) and note that 𝜆HS|𝛼=0 = 0
from Eq. (2.16)). Therefore, the Higgs portal to the SM is “closed” for 𝛼 = 0 and the cross
section of Direct Detection vanishes. This becomes apparent as a dip in Fig. 6.2g.

From Fig. 6.2 it can be seen that most points above the neutrino floor correspond to Higgs
mixing angles with 𝛼 < 𝜋/4, but the single point that shows up in the region 𝑚𝜑 < 𝑚ℎ in
Fig. 6.2d corresponds to 𝛼 ≈ −𝜋/2.

6.3 Behavior with Respect to Selected Parameters and Gauge Dependence
In order to examine how the cross section depends on individual parameters, we choose a
parameter point from our scan that lies well above the neutrino floor in Fig. 6.1. Specifically,
the point with

𝑚𝜑 = 546.93 GeV,

𝑚𝜒 = 72.53 GeV,

𝑣S = 152.05 GeV,

𝛼 = 0.224

(6.8)

is chosen, which corresponds to the cross section

𝑓𝜒𝜒 · 𝜎 = 𝑓𝜒𝜒 · 2.16 × 10−48 cm2 = 8.63 × 10−49 cm2 . (6.9)

There is a green and a blue curve in all plots of Figs. 6.3–6.5a. The green curve corresponds
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Figure 6.3: Dependence of selected parameter points on 𝑚𝜒. In a, the parameter point of
Eq. (6.8) was varied. In b, the selected parameter point is given by 𝑚𝜑 = 1 TeV, 𝑣S = 2𝑣 and
sin 𝛼 = 0.1, as in [17].

to the approach of this work for the computation of the cross section, i. e. taking into account
only the last diagram of Fig. 5.9. For the blue curve, all diagrams of Fig. 5.9 were taken into
account. We will refer to this approach as “including all gluon diagrams”.

Fig. 6.3a shows the behavior of the selected parameter point upon variation of 𝑚𝜒. While
for 𝑚𝜒 values larger than 30 GeV the difference between the two approaches is roughly a
factor of 3, the curves differ fundamentally for small masses 𝑚𝜒. As it is argued in [82], the
Goldstone nature of the DM candidate of the DCxSM entails that – in the limit of vanishing
momentum transfer 𝑡 → 0 – only the U(1) breaking term of the Higgs potential 2.1 gives rise
to non-vanishing loop corrections to the scattering between DM and a nucleon. Conversely,
the Direct Detection cross section must vanish if U(1) is restored, which is equivalent to the
limit 𝑚𝜒 → 0. This behavior is only revealed in our approach, but not if all gluon diagrams
are taken into account.

Moreover, including all gluon diagrams gives rise to a pole at 𝑚𝜒 = 𝑚𝜑/2 and – although
it is hardly visible in Fig. 6.3a – also at 𝑚𝜒 = 𝑚ℎ/2. These poles are introduced by the
field-strength renormalization factors of the Higgs mediators and they are not canceled if all
gluon diagrams are included (see the discussion in Sec. 5.3).

For comparison with the results of [17] consider Fig. 6.3b, where the parameter point to be
varied is chosen accordingly. When including all gluon diagrams, as it is done in [17], their
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Figure 6.4: Dependence of the cross sections of selected parameter points on 𝑣S and 𝑚𝜑.
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and our results differ by almost an order of magnitude.
While Fig. 6.4a, which illustrates the dependence of the cross section on 𝑣S, only confirms

the observation from Sec. 6.2 that a large value of the non-SM-like VEV suppresses the
cross section, the dependence on 𝑚𝜑 shown in Fig. 6.4b reveals again a significant difference
between the two approaches. While both have a pole for degenerate Higgs masses 𝑚𝜑 = 𝑚ℎ

(this complies with the dip in Fig. 6.2b), including all gluon diagrams introduces several other
poles, for example at 𝑚𝜑 = 𝑚ℎ/2 and 𝑚𝜑 = 2𝑚ℎ.

In order to check our result for gauge invariance, we define the relative gauge dependence
as

Δ𝜉𝜎 ≡
𝜎 − 𝜎|𝜉=1

𝜎|𝜉=1
. (6.10)

It is illustrated in Fig 6.5a. While in our approach there is no gauge dependence, including
all gluon diagrams introduces a significant gauge dependence, which again can be traced back
to the field-strength renormalization constants of the Higgs mediators.

Finally, we examine the contribution of the gluon box diagrams, that is the last diagram in
Fig. 5.9, which is given in more detail in Fig. 5.10. Let 𝜎|nogb be the cross section without the
contribution of these gluon boxes, while 𝜎 is still the cross section computed in our approach,
i. e. including the gluon box diagrams. The relative dependence of the cross section on the
gluon box diagrams is then defined as

Δgb𝜎 ≡
𝜎 − 𝜎|nogb

𝜎|nogb
. (6.11)

This quantity is plotted against 𝑚𝜒 in Fig 6.5b. Obviously, the influence of the gluon box
diagrams is in the sub-percentage region. Hence, not taking into account the gluon box
diagrams and thereby treating all diagrams with external gluons in Fig. 5.9 consistently
would not significantly alter the overall result.

a)

10−1 100 101 102 103 104

ξ

0%

50%

100%

∆
ξσ

b)

10−1 100 101 102 103

mχ/GeV

−1%

−0.8%

−0.6%

−0.4%

−0.2%

0%

∆
gb
σ

Figure 6.5: Gauge dependence and dependence on the gluon box diagrams. Δ𝜉𝜎 and Δgb𝜎 are
defined in Eqs. (6.10) and (6.11), respectively.





CHAPTER 7
Conclusion

In this thesis the Dark Complex Scalar Extension of the Standard Model (DCxSM) was
studied, which includes a DM candidate, and the spin-independent cross section for DM
Direct Detection was computed. It was argued in Chapter 3 that the momentum transfer
between the DM particle and the target nucleus in Direct Detection scattering processes is
negligibly small and in Chapter 5 it was shown that the cross section therefore vanishes at
tree level. Hence, it is required to also compute the higher-order electroweak corrections to
this process, which was the major part of this work.

As a general feature of Quantum Field Theories, higher-order corrections introduce infinities,
which need to be taken care of by renormalization. Chapter 4 was dedicated to the elaboration
of the renormalization procedure specific to the Direct Detection process in the DCxSM.
Moreover, the computation required the application of certain approximations for being
able to match the analytical results to the effective Lagrangian, which is necessary for the
incorporation of nuclear physics. They were worked out in Chapter 5.

Finally, after the analytical calculation of the Direct Detection cross section, the result
has been numerically analyzed in Chapter 6 by performing a parameter scan. It turned out
that for xenon based Direct Detection experiments there are parameter points above the
background due to neutrino–xenon scattering. Hence, prospective experiments that reach
sufficiently high sensitivities will either detect a signal which can be explained within the
DCxSM or exclude certain parameter points of the DCxSM.

Furthermore, the standard approach in the literature – which takes into account a certain
subset of the two-loop diagrams with external gluons – was compared to the approach of this
work, where consistently only one-loop diagrams were taken into account.1 In the former
approach the behavior of the cross section fundamentally differs from what is expected due
to the Goldstone nature of the DM candidate in the DCxSM, whereas in our approach the
proper behavior (the vanishing of the cross section in the limit of vanishing DM mass) was
observed.

Further research would be required in order to consistently take into account the diagrams
with external gluons given in Fig. 5.9, which is only possible by additionally computing the
corresponding diagram with the two-loop correction to the gluon–Higgs vertex.

1 While this approach did also include the effective two-loop box and triangles diagrams with external gluons,
it was shown that dropping their contributions does not significantly alter the result.
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APPENDIX A
The Higgs Mass Mixing Angle

For the purpose of deriving Eqs. (2.15), let us abbreviate the Higgs mass mixing matrix as1

ℳ2 =
(︂

𝑎 𝑐
𝑐 𝑏

)︂
, where 𝑎 = 𝜆H𝑣2 , 𝑏 = 𝜆S𝑣S , 𝑐 = 𝜆HS𝑣𝑣S . (A.1)

Computing the matrix product 𝑅ℳ2𝑅−1 explicitly, Eq. (2.13) can be given as(︂
𝑎 cos2 𝛼 + 2𝑐 cos 𝛼 sin 𝛼 + 𝑏 sin2 𝛼 (𝑏 − 𝑎) cos 𝛼 sin 𝛼 + 𝑐

(︀
cos2 𝛼 − sin2 𝛼

)︀
(𝑏 − 𝑎) cos 𝛼 sin 𝛼 + 𝑐

(︀
cos2 𝛼 − sin2 𝛼

)︀
𝑎 sin2 𝛼 − 2𝑐 cos 𝛼 sin 𝛼 + 𝑏 cos2 𝛼

)︂
!=
(︂

𝑚2
1 0

0 𝑚2
2

)︂
. (A.2)

These four equations in (A.2) (two of which are equal) define 𝛼. Since a shift 𝛼 → 𝛼 + 𝜋
turns 𝑅 → −𝑅 and therefore does not affect 𝑅ℳ2𝑅−1 and the defining equations for 𝛼, one
may assume −𝜋/2 ≤ 𝛼 < 𝜋/2.

From the vanishing off-diagonal elements in Eq. (A.2) follows

tan 2𝛼 = 2𝑐

𝑎 − 𝑏
= 2𝜆HS𝑣𝑣S

𝜆H𝑣2 − 𝜆S𝑣2
S

. (A.3)

Unfortunately, since tan 2𝛼 is not injective on [−𝜋/2, 𝜋/2], this equation does not unambigu-
ously determine 𝛼. However, the diagonal elements of Eq. (A.2) have not been used so far.
Subtracting them from each other and plugging in 𝑎 − 𝑏 from Eq. (A.3) yields

𝑚2
2 − 𝑚2

1 = −(𝑎 − 𝑏) cos 2𝛼 − 2𝑐 sin 2𝛼 = − 2𝑐

sin 2𝛼
. (A.4)

Solving this equation for sin 2𝛼 gives the second relation in (2.15). The identity for cos 2𝛼 is
trivially derived from the expression of tan 2𝛼 and sin 2𝛼.

1 This derivation was inspired by [83].
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APPENDIX B
Vanishing Propagator and Vertex Corrections

In Sec. 5.2.1, the electroweak propagator and vertex corrections to the DM Direct Detection
process in the DCxSM have been discussed. There, only diagrams were considered where the
mediator is a Higgs boson, i. e. either ℎ1 or ℎ2. While Feynman rules do also give rise to
diagrams with other electroweak mediators, they all vanish identically. In this appendix, we
will consider these diagrams – which are given in Fig. B.1 – one by one and explain why they
do not contribute.

In this section we are going to use the convention that 𝑝1 and 𝑝2 are the incoming and
outgoing quark four-momenta, respectively. 𝑞 = 𝑝2 − 𝑝1 is the momentum transfer and 𝑘
is the loop momentum. That is, for the diagrams that are discussed in this section, the
momenta are defined as in Fig. B.2.

𝜒 𝜒

𝑞 𝑞

a)
𝐺+ 𝐺+

Φ1

𝜒 𝜒

𝑞 𝑞

b)
ℎ𝑖

Φ2 Φ2
𝐺0

𝜒 𝜒

𝑞 𝑞

c)
ℎ𝑖

Φ3 Φ3
Φ1

𝜒 𝜒

𝑞 𝑞

d)
ℎ𝑖

𝐺+ 𝑊 +

Φ1

Figure B.1: One-loop electroweak propagator and vertex corrections with mediators other than
the Higgs boson. Here, the following abbreviations were used:

𝑖 = 1, 2 ,

Φ1 = 𝛾, 𝑍 ,

Φ2 = 𝑓, 𝜂± ,

Φ3 = 𝑓, 𝑊 +, 𝐺+, 𝜂± .

Furthermore, 𝑓 = 𝑢, 𝑐, 𝑡, 𝑑, 𝑠, 𝑏, 𝑒, 𝜇, 𝜏 stands for all charged fermions.

𝑞 + 𝑘 𝑘

𝑞

𝑝1 𝑝2

𝜒 𝜒

𝑞 𝑞

where
𝜒 𝜒

=
𝜒 𝜒

or
𝜒 𝜒

ℎ𝑖

Figure B.2: The momentum convention that is used in this appendix. The blob describes
the interaction of the DM particle with two arbitrary particles either via a four vertex (as in
Fig. B.1a) or alternatively via a Higgs boson propagator (as in Fig. B.1b–d).
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Using this convention, the diagrams in Fig. B.1 vanish for the following reasons:

Fig. B.1a:
From Eq. (2.10) it is apparent that the vertex factor of the 𝜒2 ⃒⃒𝐺+⃒⃒2 vertex is
scalar and constant.1 On the other hand, both the vertices 𝛾

⃒⃒
𝐺+⃒⃒2 and 𝑍

⃒⃒
𝐺+⃒⃒2

are proportional to 𝑞𝜇 + 2𝑘𝜇 [84]. The term with 𝑘𝜇 vanishes by integration
over the loop momentum, since the factor of 𝑘𝜇 will make the integrand odd.
The momentum transfer 𝑞𝜇 forms a dot product with the vector boson Feynman
propagator 𝐷𝜇𝜈

𝐹 (𝑞), which yields 𝑞𝜇𝐷𝜇𝜈
𝐹 (𝑞) ∼ 𝑞𝜈 for any gauge. This 𝑞𝜈 will then

be dotted into the 𝛾𝜇 matrix of the 𝑞𝑞Φ1 vertex, where it produces the expression

𝑢̄𝑝2/𝑞𝑢𝑝1 = 𝑢̄𝑝2(/𝑝2 − /𝑝1)𝑢𝑝1 , (B.1)

which vanishes after applying the Dirac equation 𝑢̄𝑝(/𝑝 − 𝑚) = (/𝑝 − 𝑚)𝑢𝑝 = 0.

Fig. B.1b, Φ2 = 𝑓 :
The vertex factor of the 𝑓𝑓ℎ𝑖 vertex is scalar and constant for any fermion 𝑓 . On
the other hand, the vertex factor of the 𝑓𝑓𝐺0 vertex is proportional to 𝛾5 [84].
Hence, the trace of the loop has the structure

Tr(/𝑘 + 𝑚)𝛾5(/𝑞 + /𝑘 + 𝑚) = 0 , (B.2)

which vanishes, since Tr 𝛾5 = Tr 𝛾5𝛾𝜇 = Tr 𝛾5𝛾𝜇𝛾𝜈 = 0.

Fig. B.1b, Φ2 = 𝜂±:
The two diagrams of B.1b with Φ3 = 𝜂+ and Φ3 = 𝜂− precisely cancel each other,
because 𝜂+ and 𝜂− have identical propagators and the vertices 𝜂2

+ℎ𝑖 and 𝜂2
−ℎ𝑖

have identical vertex factors, but the vertices 𝜂2
+𝐺0 and 𝜂2

−𝐺0 yield a relative
minus sign [84].

Fig. B.1c, Φ3 = 𝑓 :
Since the vertex factor of the 𝑓𝑓ℎ𝑖 vertex is scalar and constant for any fermion
𝑓 [84] and the vertex factor of the 𝑓𝑓Φ1 vertex (Φ1 = 𝛾, 𝑍) is proportional to
𝛾𝜇(1+𝑎𝛾5) (for some scalar 𝑎) [84], the trace of the fermion loop has the structure

Tr(/𝑘 + 𝑚)𝛾𝜇(1 + 𝑎𝛾5)(/𝑞 + /𝑘 + 𝑚) = 4𝑚(𝑞𝜇 + 2𝑘𝜇) . (B.3)

Here it was used that the trace over an odd number of 𝛾 matrices vanishes and so
does the trace over a product of up to three 𝛾 matrices together with 𝛾5. Thus,
the argument that holds for the diagram in Fig. B.1a can also be applied in this
case.

1 In this appendix, “constant” means momentum independent and “scalar” means not containing a 𝛾 matrix.
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Fig. B.1c, Φ3 = 𝑊 +:
The coupling between a Higgs boson ℎ𝑖 and two 𝑊 + bosons is constant, scalar
and proportional to 𝑔𝜂𝜅 [84]. The coupling between 𝛾 or 𝑍 and two 𝑊 + is
proportional to [84]

𝑉𝜎𝜌𝜇(𝑞, 𝑘) ≡ −𝑔𝜎𝜌(𝑞 + 2𝑘)𝜇 + 𝑔𝜌𝜇(2𝑞 + 𝑘)𝜎 + 𝑔𝜇𝜎(𝑘 − 𝑞)𝜌 . (B.4)

If 𝐷𝜇𝜈
𝑎 (𝑝) is the propagator of vector bosons 𝑎 = 𝛾, 𝑍, 𝑊 +, then the structure of

the loop together with the Φ1 = 𝛾, 𝑍 propagator reads

𝐿𝜈 ≡ 𝑔𝜂𝜅 𝐷𝜎𝜂
𝑊 (𝑘) 𝐷𝜌𝜅

𝑊 (𝑞 + 𝑘) 𝑉𝜎𝜌𝜇(𝑞, 𝑘) 𝐷𝜇𝜈
Φ1

(𝑞) . (B.5)

𝜈 is the only free index of this expression, which can – after performing all
possible contractions – only be carried by either 𝑞 or 𝑘, since none of the objects
in Eq. (B.5) contains a 𝛾 matrix. Thus, 𝐿𝜈 must be of the form

𝐿𝜈 = 𝐴(𝑞2, 𝑘2)𝑞𝜈 + 𝐵(𝑞2, 𝑘2)𝑘𝜈 , (B.6)

where 𝐴 and 𝐵 are arbitrary functions. Consequently, the argument that holds
for the diagram in Fig. B.1a also works in this case.

Fig. B.1c, Φ3 = 𝐺+:
The vertex factor of the ℎ𝑖

⃒⃒
𝐺+⃒⃒2 vertex is scalar and constant [84]. Thus, the

argument for diagram B.1a also works in this case.

Fig. B.1c, Φ3 = 𝜂±:
The vertex of ℎ𝑖 and two charged ghosts is scalar and constant [84], whereas the
vertex of 𝛾 or 𝑍 and two charged ghosts is proportional to 𝑞𝜇 [84]. Thus, the
argument for diagram B.1a also works in this case.

Fig. B.1d:
The vertex factor of the ℎ𝑖𝐺

+𝑊 + vertex is proportional to 2𝑞𝜎 + 𝑘𝜎. The vertex
factor of the Φ1𝐺+𝑊 + vertex is a constant and proportional to 𝑔𝜌𝜇 [84]. Similarly
to the case B.1c for Φ3 = 𝑊 +, the structure of the loop together with the
propagator of Φ1 = 𝛾, 𝑍 is given by

𝐿′𝜈 ≡ (2𝑞 + 𝑘)𝜎 𝐷𝜎𝜌
𝑊 𝑔𝜌𝜇 𝐷𝜇𝜈

Φ1
. (B.7)

Again, the free index can only be carried by either 𝑞 or 𝑘 and the argument of
the case B.1c for Φ5 = 𝑊 +, can also be applied here.
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The purpose of following list of software that was used for this work is to be fully transparent
about how this work was elaborated and to give the authors of this software the credit they
deserve. The short descriptions of the software were taken from their websites or paper
abstracts.

Collier [63] A fortran library for the numerical evaluation of one-
loop scalar and tensor integrals appearing in perturba-
tive relativistic QFT.

FeynArts [85] A Mathematica package for the generation and visual-
ization of Feynman diagrams and amplitudes.

FeynCalc [86, 87] A Mathematica package for symbolic evaluation of
Feynman diagrams and algebraic calculations in QFT
and elementary particle physics.

HiggsBounds [77–79] A code that uses the experimental topological cross
section limits from Higgs searches at LEP, the Tevatron
and the LHC to determine if a given parameter point
has been excluded at 95% C. L.

HiggsSignals [80] A code that performs a statistical test of the Higgs
sector predictions of arbitrary models (using the Hig-
gsBounds input routines) with the measurements of
Higgs boson signal rates and masses from the Tevatron
and the LHC.

Looptools [88, 89] A package for evaluation of scalar and tensor one-
loop integrals based on the FF package by G. J. van
Oldenborgh.

micrOMEGAs [51] A code for the calculation of Dark Matter properties
including the relic density, direct and indirect rates in
a general supersymmetric model and other models of
New Physics.

Package-X [90] A Mathematica package for the analytic computation
of one-loop integrals.

Sarah [91] A Mathematica package for building and analyzing
SUSY and non-SUSY models and writing model files
for FeynArts.

ScannerS-2 [73–76] A C++ tool for scanning the parameter space of arbi-
trary scalar extensions of the Standard Model.

TikZ-Feynman [92] A LaTeX package to draw Feynman diagrams.
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